Fixed Point Theory for Lipschitzian-type Mappings with Applications

In recent years, the fixed point theory of Lipschitzian-type mappings has rapidly grown into an important field of study in both pure and applied mathematics. It has become one of the most essential tools in nonlinear functional analysis. This self-contained book provides the first systematic presen...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Sahu, D. R. (Συγγραφέας), O'Regan, Donal (Συγγραφέας), Agarwal, Ravi P. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2009.
Σειρά:Topological Fixed Point Theory and Its Applications ; 6
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03248nam a22005175i 4500
001 978-0-387-75818-3
003 DE-He213
005 20151204183718.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 |a 9780387758183  |9 978-0-387-75818-3 
024 7 |a 10.1007/978-0-387-75818-3  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Sahu, D. R.  |e author. 
245 1 0 |a Fixed Point Theory for Lipschitzian-type Mappings with Applications  |h [electronic resource] /  |c by D. R. Sahu, Donal O'Regan, Ravi P. Agarwal. 
264 1 |a New York, NY :  |b Springer New York,  |c 2009. 
300 |a X, 368 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Topological Fixed Point Theory and Its Applications ;  |v 6 
505 0 |a Fundamentals -- Convexity, Smoothness, and Duality Mappings -- Geometric Coefficients of Banach Spaces -- Existence Theorems in Metric Spaces -- Existence Theorems in Banach Spaces -- Approximation of Fixed Points -- Strong Convergence Theorems -- Applications of Fixed Point Theorems. 
520 |a In recent years, the fixed point theory of Lipschitzian-type mappings has rapidly grown into an important field of study in both pure and applied mathematics. It has become one of the most essential tools in nonlinear functional analysis. This self-contained book provides the first systematic presentation of Lipschitzian-type mappings in metric and Banach spaces. The first chapter covers some basic properties of metric and Banach spaces. Geometric considerations of underlying spaces play a prominent role in developing and understanding the theory. The next two chapters provide background in terms of convexity, smoothness and geometric coefficients of Banach spaces including duality mappings and metric projection mappings. This is followed by results on existence of fixed points, approximation of fixed points by iterative methods and strong convergence theorems. The final chapter explores several applicable problems arising in related fields. This book can be used as a textbook and as a reference for graduate students, researchers and applied mathematicians working in nonlinear functional analysis, operator theory, approximations by iteration theory, convexity and related geometric topics, and best approximation theory. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Functional analysis. 
650 0 |a Topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Topology. 
700 1 |a O'Regan, Donal.  |e author. 
700 1 |a Agarwal, Ravi P.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387758176 
830 0 |a Topological Fixed Point Theory and Its Applications ;  |v 6 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-75818-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)