The Mathematical Theory of Finite Element Methods

This book develops the basic mathematical theory of the finite element method, the most widely used technique for engineering design and analysis. The third edition contains four new sections: the BDDC domain decomposition preconditioner, convergence analysis of an adaptive algorithm, interior penal...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Brenner, Susanne C. (Συγγραφέας), Scott, L. Ridgway (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2008.
Σειρά:Texts in Applied Mathematics, 15
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04492nam a22005655i 4500
001 978-0-387-75934-0
003 DE-He213
005 20151204184248.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387759340  |9 978-0-387-75934-0 
024 7 |a 10.1007/978-0-387-75934-0  |2 doi 
040 |d GrThAP 
050 4 |a T57-57.97 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Brenner, Susanne C.  |e author. 
245 1 4 |a The Mathematical Theory of Finite Element Methods  |h [electronic resource] /  |c by Susanne C. Brenner, L. Ridgway Scott. 
264 1 |a New York, NY :  |b Springer New York,  |c 2008. 
300 |a XVIII, 400 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Texts in Applied Mathematics,  |x 0939-2475 ;  |v 15 
505 0 |a Basic Concepts -- Sobolev Spaces -- Variational Formulation of Elliptic Boundary Value Problems -- The Construction of a Finite Element Space -- Polynomial Approximation Theory in Sobolev Spaces -- n-Dimensional Variational Problems -- Finite Element Multigrid Methods -- Additive Schwarz Preconditioners -- Max—norm Estimates -- Adaptive Meshes -- Variational Crimes -- Applications to Planar Elasticity -- Mixed Methods -- Iterative Techniques for Mixed Methods -- Applications of Operator-Interpolation Theory. 
520 |a This book develops the basic mathematical theory of the finite element method, the most widely used technique for engineering design and analysis. The third edition contains four new sections: the BDDC domain decomposition preconditioner, convergence analysis of an adaptive algorithm, interior penalty methods and Poincara\'e-Friedrichs inequalities for piecewise W^1_p functions. New exercises have also been added throughout. The initial chapter provides an introducton to the entire subject, developed in the one-dimensional case. Four subsequent chapters develop the basic theory in the multidimensional case, and a fifth chapter presents basic applications of this theory. Subsequent chapters provide an introduction to: - multigrid methods and domain decomposition methods - mixed methods with applications to elasticity and fluid mechanics - iterated penalty and augmented Lagrangian methods - variational "crimes" including nonconforming and isoparametric methods, numerical integration and interior penalty methods - error estimates in the maximum norm with applications to nonlinear problems - error estimators, adaptive meshes and convergence analysis of an adaptive algorithm - Banach-space operator-interpolation techniques The book has proved useful to mathematicians as well as engineers and physical scientists. It can be used for a course that provides an introduction to basic functional analysis, approximation theory and numerical analysis, while building upon and applying basic techniques of real variable theory. It can also be used for courses that emphasize physical applications or algorithmic efficiency. Reviews of earlier editions: "This book represents an important contribution to the mathematical literature of finite elements. It is both a well-done text and a good reference." (Mathematical Reviews, 1995) "This is an excellent, though demanding, introduction to key mathematical topics in the finite element method, and at the same time a valuable reference and source for workers in the area." (Zentralblatt, 2002) . 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Computer mathematics. 
650 0 |a Computational intelligence. 
650 0 |a Mechanics. 
650 0 |a Mechanics, Applied. 
650 1 4 |a Mathematics. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Theoretical and Applied Mechanics. 
650 2 4 |a Functional Analysis. 
700 1 |a Scott, L. Ridgway.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387759333 
830 0 |a Texts in Applied Mathematics,  |x 0939-2475 ;  |v 15 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-75934-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)