Time Series Analysis With Applications in R /

Time Series Analysis With Applications in R, Second Edition, presents an accessible approach to understanding time series models and their applications. Although the emphasis is on time domain ARIMA models and their analysis, the new edition devotes two chapters to the frequency domain and three to...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Cryer, Jonathan D. (Συγγραφέας), Chan, Kung-Sik (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2008.
Σειρά:Springer Texts in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04131nam a22005175i 4500
001 978-0-387-75959-3
003 DE-He213
005 20151204180943.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387759593  |9 978-0-387-75959-3 
024 7 |a 10.1007/978-0-387-75959-3  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Cryer, Jonathan D.  |e author. 
245 1 0 |a Time Series Analysis  |h [electronic resource] :  |b With Applications in R /  |c by Jonathan D. Cryer, Kung-Sik Chan. 
264 1 |a New York, NY :  |b Springer New York,  |c 2008. 
300 |a XIV, 491 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Texts in Statistics,  |x 1431-875X 
505 0 |a Fundamental Concepts -- Trends -- Models For Stationary Time Series -- Models For Nonstationary Time Series -- Model Specification -- Parameter Estimation -- Model Diagnostics -- Forecasting -- Seasonal Models -- Time Series Regression Models -- Time Series Models Of Heteroscedasticity -- To Spectral Analysis -- Estimating The Spectrum -- Threshold Models. 
520 |a Time Series Analysis With Applications in R, Second Edition, presents an accessible approach to understanding time series models and their applications. Although the emphasis is on time domain ARIMA models and their analysis, the new edition devotes two chapters to the frequency domain and three to time series regression models, models for heteroscedasticity, and threshold models. All of the ideas and methods are illustrated with both real and simulated data sets. A unique feature of this edition is its integration with the R computing environment. The tables and graphical displays are accompanied by the R commands used to produce them. An extensive R package, TSA, which contains many new or revised R functions and all of the data used in the book, accompanies the written text. Script files of R commands for each chapter are available for download. There is also an extensive appendix in the book that leads the reader through the use of R commands and the new R package to carry out the analyses. Jonathan Cryer is Professor Emeritus, University of Iowa, in the Department of Statistics and Actuarial Science. He is a Fellow of the American Statistical Association and received a Collegiate Teaching Award from the University of Iowa College of Liberal Arts and Sciences. He is the author of Statistics for Business: Data Analysis and Modeling, Second Edition, (with Robert B. Miller), the Minitab Handbook, Fifth Edition, (with Barbara Ryan and Brian Joiner), the Electronic Companion to Statistics (with George Cobb), Electronic Companion to Business Statistics (with George Cobb) and numerous research papers. Kung-Sik Chan is Professor, University of Iowa, in the Department of Statistics and Actuarial Science. He is a Fellow of the American Statistical Association and the Institute of the Mathematical Statistics, and an Elected Member of the International Statistical Institute. He received a Faculty Scholar Award from the University of Iowa in 1996. He is the author of Chaos: A Statistical Perspective (with Howell Tong) and numerous research papers. 
650 0 |a Mathematics. 
650 0 |a Actuarial science. 
650 0 |a Probabilities. 
650 0 |a Statistics. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Actuarial Sciences. 
700 1 |a Chan, Kung-Sik.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387759586 
830 0 |a Springer Texts in Statistics,  |x 1431-875X 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-75959-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)