|
|
|
|
LEADER |
02930nam a22004695i 4500 |
001 |
978-0-387-76277-7 |
003 |
DE-He213 |
005 |
20151204172401.0 |
007 |
cr nn 008mamaa |
008 |
100301s2008 xxu| s |||| 0|eng d |
020 |
|
|
|a 9780387762777
|9 978-0-387-76277-7
|
024 |
7 |
|
|a 10.1007/978-0-387-76277-7
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a QA8.9-10.3
|
072 |
|
7 |
|a PBC
|2 bicssc
|
072 |
|
7 |
|a PBCD
|2 bicssc
|
072 |
|
7 |
|a MAT018000
|2 bisacsh
|
082 |
0 |
4 |
|a 511.3
|2 23
|
100 |
1 |
|
|a Srivastava, S. M.
|e author.
|
245 |
1 |
2 |
|a A Course on Mathematical Logic
|h [electronic resource] /
|c by S. M. Srivastava.
|
264 |
|
1 |
|a New York, NY :
|b Springer New York,
|c 2008.
|
300 |
|
|
|a X, 150 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Universitext
|
505 |
0 |
|
|a Syntax of First-Order Logic -- Semantics of First-Order Languages -- Propositional Logic -- Proof and Metatheorems in First-Order Logic -- Completeness Theorem and Model Theory -- Recursive Functions and Arithmetization of Theories -- Incompleteness Theorems and Recursion Theory.
|
520 |
|
|
|a This is a short, distinctive, modern, and motivated introduction to mathematical logic for senior undergraduate and beginning graduate students in mathematics and computer science. Any mathematician who is interested in knowing what logic is concerned with and who would like to learn Gödel’s incompleteness theorems should find this book particularly convenient. The treatment is thoroughly mathematical, and the entire subject has been approached like a branch of mathematics. Serious efforts have been made to make the book suitable for the classroom as well as for self-reading. The book does not strive to be a comprehensive encyclopedia of logic. Still, it gives essentially all the basic concepts and results in mathematical logic. The book prepares students to branch out in several areas of mathematics related to foundations and computability such as logic, axiomatic set theory, model theory, recursion theory, and computability. The main prerequisite for this book is the willingness to work at a reasonable level of mathematical rigor and generality. Shashi Mohan Srivastava is a Professor at the Indian Statistical Institute, Kolkata, India. He is also the author of A Course on Borel Sets, GTM 180.
|
650 |
|
0 |
|a Mathematics.
|
650 |
|
0 |
|a Algebra.
|
650 |
|
0 |
|a Mathematical logic.
|
650 |
1 |
4 |
|a Mathematics.
|
650 |
2 |
4 |
|a Mathematical Logic and Foundations.
|
650 |
2 |
4 |
|a Algebra.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9780387762753
|
830 |
|
0 |
|a Universitext
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/978-0-387-76277-7
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-SMA
|
950 |
|
|
|a Mathematics and Statistics (Springer-11649)
|