Genetic Programming Theory and Practice V

Genetic Programming Theory and Practice V was developed from the fifth workshop at the University of Michigan’s Center for the Study of Complex Systems to facilitate the exchange of ideas and information related to the rapidly advancing field of Genetic Programming (GP). Contributions from the forem...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Riolo, Rick (Επιμελητής έκδοσης), Soule, Terence (Επιμελητής έκδοσης), Worzel, Bill (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2008.
Σειρά:Genetic and Evolutionary Computation Series,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04915nam a22005655i 4500
001 978-0-387-76308-8
003 DE-He213
005 20151204184719.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387763088  |9 978-0-387-76308-8 
024 7 |a 10.1007/978-0-387-76308-8  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Genetic Programming Theory and Practice V  |h [electronic resource] /  |c edited by Rick Riolo, Terence Soule, Bill Worzel. 
264 1 |a Boston, MA :  |b Springer US,  |c 2008. 
300 |a XIV, 279 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Genetic and Evolutionary Computation Series,  |x 1932-0167 
505 0 |a Genetic Programming: Theory and Practice -- Better Solutions Faster: Soft Evolution of Robust Regression Models InParetogeneticprogramming -- Manipulation of Convergence in Evolutionary Systems -- Large-Scale, Time-Constrained Symbolic Regression-Classification -- Solving Complex Problems in Human Genetics Using Genetic Programming: The Importance of Theorist-Practitionercomputer Interaction -- Towards an Information Theoretic Framework for Genetic Programming -- Investigating Problem Hardness of Real Life Applications -- Improving the Scalability of Generative Representations for Openended Design -- Programstructure-Fitnessdisconnect and Its Impact on Evolution in Genetic Programming -- Genetic Programmingwith Reuse of Known Designs for Industrially Scalable, Novel Circuit Design -- Robust engineering design of electronic circuits with active components using genetic programming and bond Graphs -- Trustable symbolic regression models: using ensembles, interval arithmetic and pareto fronts to develop robust and trust-aware models -- Improving Performance and Cooperation in Multi-Agent Systems -- An Empirical Study of Multi-Objective Algorithms for Stock Ranking -- Using GP and Cultural Algorithms to Simulate the Evolution of an Ancient Urban Center. 
520 |a Genetic Programming Theory and Practice V was developed from the fifth workshop at the University of Michigan’s Center for the Study of Complex Systems to facilitate the exchange of ideas and information related to the rapidly advancing field of Genetic Programming (GP). Contributions from the foremost international researchers and practitioners in the GP arena examine the similarities and differences between theoretical and empirical results on real-world problems. The text explores the synergy between theory and practice, producing a comprehensive view of the state of the art in GP application. Specific topics addressed in the book include: the hurdles faced in solving large-scale, cutting edge applications promising techniques, including fitness and age layered populations, code reuse through caching, archives and run transferable libraries, Pareto optimization, and pre- and post-processing the use of information theoretic measures and ensemble techniques approaches to help GP create trustable solutions the use of expert knowledge to guide GP ways to make GP tools more accessible to the non-GP-expert practical methods for understanding and choosing between the recent proliferation of techniques for improving GP performance the potential for GP to undergo radical changes to accommodate the expanded understanding of biological genetics and evolution The work covers applications of GP to a wide variety of domains, including bioinformatics, symbolic regression for system modeling, financial modeling, circuit design and robot controllers. This volume is a unique and indispensable tool for academics, researchers and industry professionals involved in GP, evolutionary computation, machine learning and artificial intelligence. 
650 0 |a Computer science. 
650 0 |a Computer programming. 
650 0 |a Computers. 
650 0 |a Algorithms. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Computing Methodologies. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
650 2 4 |a Programming Techniques. 
700 1 |a Riolo, Rick.  |e editor. 
700 1 |a Soule, Terence.  |e editor. 
700 1 |a Worzel, Bill.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387763071 
830 0 |a Genetic and Evolutionary Computation Series,  |x 1932-0167 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-76308-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)