Polytopes, Rings, and K-Theory

This book treats the interaction between discrete convex geometry, commutative ring theory, algebraic K-theory, and algebraic geometry. The basic mathematical objects are lattice polytopes, rational cones, affine monoids, the algebras derived from them, and toric varieties. The book discusses severa...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Gubeladze, Joseph (Συγγραφέας), Bruns, Winfried (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2009.
Έκδοση:1.
Σειρά:Springer Monographs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03520nam a22005535i 4500
001 978-0-387-76356-9
003 DE-He213
005 20151204183718.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 |a 9780387763569  |9 978-0-387-76356-9 
024 7 |a 10.1007/b105283  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Gubeladze, Joseph.  |e author. 
245 1 0 |a Polytopes, Rings, and K-Theory  |h [electronic resource] /  |c by Joseph Gubeladze, Winfried Bruns. 
250 |a 1. 
264 1 |a New York, NY :  |b Springer New York,  |c 2009. 
300 |a XIV, 461 p. 52 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 1439-7382 
505 0 |a I Cones, monoids, and triangulations -- Polytopes, cones, and complexes -- Affine monoids and their Hilbert bases -- Multiples of lattice polytopes -- II Affine monoid algebras -- Monoid algebras -- Isomorphisms and automorphisms -- Homological properties and Hilbert functions -- Gr#x00F6;bner bases, triangulations, and Koszul algebras -- III K-theory -- Projective modules over monoid rings -- Bass#x2013;Whitehead groups of monoid rings -- Varieties. 
520 |a This book treats the interaction between discrete convex geometry, commutative ring theory, algebraic K-theory, and algebraic geometry. The basic mathematical objects are lattice polytopes, rational cones, affine monoids, the algebras derived from them, and toric varieties. The book discusses several properties and invariants of these objects, such as efficient generation, unimodular triangulations and covers, basic theory of monoid rings, isomorphism problems and automorphism groups, homological properties and enumerative combinatorics. The last part is an extensive treatment of the K-theory of monoid rings, with extensions to toric varieties and their intersection theory. This monograph has been written with a view towards graduate students and researchers who want to study the cross-connections of algebra and discrete convex geometry. While the text has been written from an algebraist's view point, also specialists in lattice polytopes and related objects will find an up-to-date discussion of affine monoids and their combinatorial structure. Though the authors do not explicitly formulate algorithms, the book takes a constructive approach wherever possible. Winfried Bruns is Professor of Mathematics at Universität Osnabrück. Joseph Gubeladze is Professor of Mathematics at San Francisco State University. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a K-theory. 
650 0 |a Convex geometry. 
650 0 |a Discrete geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a K-Theory. 
650 2 4 |a Convex and Discrete Geometry. 
700 1 |a Bruns, Winfried.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387763552 
830 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |u http://dx.doi.org/10.1007/b105283  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)