Sign-Changing Critical Point Theory

Many nonlinear problems in physics, engineering, biology, and social sciences can be reduced to finding critical points of functionals. While minimax and Morse theories provide answers to many situations and problems on the existence of multiple critical points of a functional, they often cannot pro...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Zou, Wenming (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2008.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03388nam a22005415i 4500
001 978-0-387-76658-4
003 DE-He213
005 20151204170839.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387766584  |9 978-0-387-76658-4 
024 7 |a 10.1007/978-0-387-76657-7  |2 doi 
040 |d GrThAP 
050 4 |a QA614-614.97 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 514.74  |2 23 
100 1 |a Zou, Wenming.  |e author. 
245 1 0 |a Sign-Changing Critical Point Theory  |h [electronic resource] /  |c by Wenming Zou. 
264 1 |a Boston, MA :  |b Springer US,  |c 2008. 
300 |a XIV, 310 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preliminaries -- Schechter–Tintarev Linking -- Sign-Changing Saddle Point -- On a Brezis–Nirenberg Theorem -- Even Functionals -- Parameter Dependence -- On a Bartsch–Chang–Wang–Weth Theory. 
520 |a Many nonlinear problems in physics, engineering, biology, and social sciences can be reduced to finding critical points of functionals. While minimax and Morse theories provide answers to many situations and problems on the existence of multiple critical points of a functional, they often cannot provide much-needed additional properties of these critical points. Sign-changing critical point theory has emerged as a new area of rich research on critical points of a differentiable functional with important applications to nonlinear elliptic PDEs. Key features of this book: * Self-contained in-depth treatment of sign-changing critical point theory * Further explorations in minimax and Morse theories * Topics devoted to linking and nodal solutions, the sign-changing saddle point theory, the generalized Brezis–Nirenberg critical point theorem, the parameter dependence of sign-changing critical points * Applications of sign-changing critical point theory studied within the classical symmetric mountain pass theorem *Applies sign-changing concepts to Schrödinger equations and boundary value problems This book is intended for advanced graduate students and researchers involved in sign-changing critical point theory, PDEs, global analysis, and nonlinear functional analysis. Also by the author: (with Martin Schechter) Critical Point Theory and Its Applications, ©2006, Springer, ISBN: 978-0-387-32965-9. 
650 0 |a Mathematics. 
650 0 |a Approximation theory. 
650 0 |a Functional analysis. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Partial differential equations. 
650 0 |a Calculus of variations. 
650 0 |a Topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Topology. 
650 2 4 |a Approximations and Expansions. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387766577 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-76657-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)