Probabilistic Logic Networks A Comprehensive Framework for Uncertain Inference /

This book describes Probabilistic Logic Networks (PLN), a novel conceptual, mathematical and computational approach to uncertain inference. Going beyond prior probabilistic approaches to uncertain inference, PLN encompasses such ideas as induction, abduction, analogy, fuzziness and speculation, and...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Goertzel, Ben (Συγγραφέας), Iklé, Matthew (Συγγραφέας), Goertzel, Izabela Freire (Συγγραφέας), Heljakka, Ari (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2009.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03678nam a22004935i 4500
001 978-0-387-76872-4
003 DE-He213
005 20151204171934.0
007 cr nn 008mamaa
008 110402s2009 xxu| s |||| 0|eng d
020 |a 9780387768724  |9 978-0-387-76872-4 
024 7 |a 10.1007/978-0-387-76872-4  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Goertzel, Ben.  |e author. 
245 1 0 |a Probabilistic Logic Networks  |h [electronic resource] :  |b A Comprehensive Framework for Uncertain Inference /  |c by Ben Goertzel, Matthew Iklé, Izabela Freire Goertzel, Ari Heljakka. 
264 1 |a Boston, MA :  |b Springer US,  |c 2009. 
300 |a VIII, 336 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Knowledge Representation -- Experiential Semantics -- Indefinite Truth Values -- First-Order Extensional Inference: Rules and Strength Formulas -- First-Order Extensional Inference with Indefinite Truth Values -- First-Order Extensional Inference with Distributional Truth Values -- Error Magnification in Inference Formulas -- Large-Scale Inference Strategies -- Higher-Order Extensional Inference -- Handling Crisp and Fuzzy Quantifiers with Indefinite Truth Values -- Intensional Inference -- Aspects of Inference Control -- Temporal and Causal Inference. 
520 |a This book describes Probabilistic Logic Networks (PLN), a novel conceptual, mathematical and computational approach to uncertain inference. Going beyond prior probabilistic approaches to uncertain inference, PLN encompasses such ideas as induction, abduction, analogy, fuzziness and speculation, and reasoning about time and causality. The book provides an overview of PLN in the context of other approaches to uncertain inference. Topics addressed in the text include: the basic formalism of PLN knowledge representation the conceptual interpretation of the terms used in PLN an indefinite probability approach to quantifying uncertainty, providing a general method for calculating the "weight-of-evidence" underlying the conclusions of uncertain inference specific PLN inference rules and the corresponding truth-value formulas used to determine the strength of the conclusion of an inference rule from the strengths of the premises large-scale inference strategies inference using variables indefinite probabilities involving quantifiers inheritance based on properties or patterns the Novamente Cognition Engine, an application of PLN temporal and causal logic in PLN Researchers and graduate students in artificial intelligence, computer science, mathematics and cognitive sciences will find this novel perspective on uncertain inference a thought-provoking integration of ideas from a variety of other lines of inquiry. 
650 0 |a Computer science. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Math Applications in Computer Science. 
700 1 |a Iklé, Matthew.  |e author. 
700 1 |a Goertzel, Izabela Freire.  |e author. 
700 1 |a Heljakka, Ari.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387768717 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-76872-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)