Fundamentals of Stochastic Filtering

The objective of stochastic filtering is to determine the best estimate for the state of a stochastic dynamical system from partial observations. The solution of this problem in the linear case is the well known Kalman-Bucy filter which has found widespread practical application. The purpose of this...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bain, Alan (Συγγραφέας), Crisan, Dan (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2009.
Σειρά:Stochastic Modelling and Applied Probability, 60
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03473nam a22005655i 4500
001 978-0-387-76896-0
003 DE-He213
005 20151030051642.0
007 cr nn 008mamaa
008 130821s2009 xxu| s |||| 0|eng d
020 |a 9780387768960  |9 978-0-387-76896-0 
024 7 |a 10.1007/978-0-387-76896-0  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Bain, Alan.  |e author. 
245 1 0 |a Fundamentals of Stochastic Filtering  |h [electronic resource] /  |c by Alan Bain, Dan Crisan. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2009. 
300 |a XIII, 390 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Stochastic Modelling and Applied Probability,  |x 0172-4568 ;  |v 60 
505 0 |a Filtering Theory -- The Stochastic Process ? -- The Filtering Equations -- Uniqueness of the Solution to the Zakai and the Kushner–Stratonovich Equations -- The Robust Representation Formula -- Finite-Dimensional Filters -- The Density of the Conditional Distribution of the Signal -- Numerical Algorithms -- Numerical Methods for Solving the Filtering Problem -- A Continuous Time Particle Filter -- Particle Filters in Discrete Time. 
520 |a The objective of stochastic filtering is to determine the best estimate for the state of a stochastic dynamical system from partial observations. The solution of this problem in the linear case is the well known Kalman-Bucy filter which has found widespread practical application. The purpose of this book is to provide a rigorous mathematical treatment of the non-linear stochastic filtering problem using modern methods. Particular emphasis is placed on the theoretical analysis of numerical methods for the solution of the filtering problem via particle methods. The book should provide sufficient background to enable study of the recent literature. While no prior knowledge of stochastic filtering is required, readers are assumed to be familiar with measure theory, probability theory and the basics of stochastic processes. Most of the technical results that are required are stated and proved in the appendices. The book is intended as a reference for graduate students and researchers interested in the field. It is also suitable for use as a text for a graduate level course on stochastic filtering. Suitable exercises and solutions are included. 
650 0 |a Mathematics. 
650 0 |a Economics, Mathematical. 
650 0 |a Numerical analysis. 
650 0 |a Probabilities. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Mechatronics. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Control, Robotics, Mechatronics. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Quantitative Finance. 
700 1 |a Crisan, Dan.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387768953 
830 0 |a Stochastic Modelling and Applied Probability,  |x 0172-4568 ;  |v 60 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-76896-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)