Support Vector Machines

This book explains the principles that make support vector machines (SVMs) a successful modelling and prediction tool for a variety of applications. The authors present the basic ideas of SVMs together with the latest developments and current research questions in a unified style. They identify thre...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Christmann, Andreas (Συγγραφέας), Steinwart, Ingo (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2008.
Σειρά:Information Science and Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04739nam a22005535i 4500
001 978-0-387-77242-4
003 DE-He213
005 20151204184141.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387772424  |9 978-0-387-77242-4 
024 7 |a 10.1007/978-0-387-77242-4  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Christmann, Andreas.  |e author. 
245 1 0 |a Support Vector Machines  |h [electronic resource] /  |c by Andreas Christmann, Ingo Steinwart. 
264 1 |a New York, NY :  |b Springer New York,  |c 2008. 
300 |a XVI, 601 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Information Science and Statistics,  |x 1613-9011 
505 0 |a Loss Functions and Their Risks -- Surrogate Loss Functions (*) -- Kernels and Reproducing Kernel Hilbert Spaces -- Infinite-Sample Versions of Support VectorMachines -- Basic Statistical Analysis of SVMs -- Advanced Statistical Analysis of SVMs (*) -- Support Vector Machines for Classification -- Support Vector Machines for Regression. -- Robustness -- Computational Aspects -- Data Mining. 
520 |a This book explains the principles that make support vector machines (SVMs) a successful modelling and prediction tool for a variety of applications. The authors present the basic ideas of SVMs together with the latest developments and current research questions in a unified style. They identify three reasons for the success of SVMs: their ability to learn well with only a very small number of free parameters, their robustness against several types of model violations and outliers, and their computational efficiency compared to several other methods. Since their appearance in the early nineties, support vector machines and related kernel-based methods have been successfully applied in diverse fields of application such as bioinformatics, fraud detection, construction of insurance tariffs, direct marketing, and data and text mining. As a consequence, SVMs now play an important role in statistical machine learning and are used not only by statisticians, mathematicians, and computer scientists, but also by engineers and data analysts. The book provides a unique in-depth treatment of both fundamental and recent material on SVMs that so far has been scattered in the literature. The book can thus serve as both a basis for graduate courses and an introduction for statisticians, mathematicians, and computer scientists. It further provides a valuable reference for researchers working in the field. The book covers all important topics concerning support vector machines such as: loss functions and their role in the learning process; reproducing kernel Hilbert spaces and their properties; a thorough statistical analysis that uses both traditional uniform bounds and more advanced localized techniques based on Rademacher averages and Talagrand's inequality; a detailed treatment of classification and regression; a detailed robustness analysis; and a description of some of the most recent implementation techniques. To make the book self-contained, an extensive appendix is added which provides the reader with the necessary background from statistics, probability theory, functional analysis, convex analysis, and topology. Ingo Steinwart is a researcher in the machine learning group at the Los Alamos National Laboratory. He works on support vector machines and related methods. Andreas Christmann is Professor of Stochastics in the Department of Mathematics at the University of Bayreuth. He works in particular on support vector machines and robust statistics. 
650 0 |a Computer science. 
650 0 |a Mathematical statistics. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Probability and Statistics in Computer Science. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Signal, Image and Speech Processing. 
700 1 |a Steinwart, Ingo.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387772417 
830 0 |a Information Science and Statistics,  |x 1613-9011 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-77242-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)