Support Vector Machines
This book explains the principles that make support vector machines (SVMs) a successful modelling and prediction tool for a variety of applications. The authors present the basic ideas of SVMs together with the latest developments and current research questions in a unified style. They identify thre...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
New York, NY :
Springer New York,
2008.
|
Σειρά: | Information Science and Statistics,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Loss Functions and Their Risks
- Surrogate Loss Functions (*)
- Kernels and Reproducing Kernel Hilbert Spaces
- Infinite-Sample Versions of Support VectorMachines
- Basic Statistical Analysis of SVMs
- Advanced Statistical Analysis of SVMs (*)
- Support Vector Machines for Classification
- Support Vector Machines for Regression.
- Robustness
- Computational Aspects
- Data Mining.