Ramanujan's Lost Notebook Part II /

This volume is the second of approximately four volumes that the authors plan to write on Ramanujan’s lost notebook, which is broadly interpreted to include all material published in The Lost Notebook and Other Unpublished Papers in 1988. The primary topics addressed in the authors’ second volume on...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Andrews, George E. (Συγγραφέας), Berndt, Bruce C. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2009.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04018nam a22004695i 4500
001 978-0-387-77766-5
003 DE-He213
005 20151204174705.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 |a 9780387777665  |9 978-0-387-77766-5 
024 7 |a 10.1007/b13290  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 |a Andrews, George E.  |e author. 
245 1 0 |a Ramanujan's Lost Notebook  |h [electronic resource] :  |b Part II /  |c by George E. Andrews, Bruce C. Berndt. 
264 1 |a New York, NY :  |b Springer New York,  |c 2009. 
300 |a XII, 420 p. 8 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a The Heine Transformation -- The Sears#x2013; Thomae Transformation -- Bilateral Series -- Well-Poised Series -- Bailey#x02019;s Lemma and Theta Expansions -- Partial Theta Functions -- Special Identities -- Theta Function Identities -- Ramanujan#x02019;s Cubic Analogue of the Classical Ramanujan#x2013;Weber Class Invariants -- Miscellaneous Results on Elliptic Functions and Theta Functions -- Formulas for the Power Series Coefficients of Certain Quotients of Eisenstein Series -- Two Letters on Eisenstein Series Written from Matlock House -- Eisenstein Series and Modular Equations -- Series Representable in Terms of Eisenstein Series -- Eisenstein Series and Approximations to #x03C0; -- Miscellaneous Results on Eisenstein Series. 
520 |a This volume is the second of approximately four volumes that the authors plan to write on Ramanujan’s lost notebook, which is broadly interpreted to include all material published in The Lost Notebook and Other Unpublished Papers in 1988. The primary topics addressed in the authors’ second volume on the lost notebook are q-series, Eisenstein series, and theta functions. Most of the entries on q-series are located in the heart of the original lost notebook, while the entries on Eisenstein series are either scattered in the lost notebook or are found in letters that Ramanujan wrote to G.H. Hardy from nursing homes. About Ramanujan's Lost Notebook, Volume I: "Andrews and Berndt are to be congratulated on the job they are doing. This is the first step...on the way to an understanding of the work of the genius Ramanujan. It should act as an inspiration to future generations of mathematicians to tackle a job that will never be complete." - Gazette of the Australian Mathematical Society "...the results are organized topically with cross-references to the identities as they appear in the original Ramanujan manuscript. Particularly helpful are the extensive references, indicating where in the literature these results have been proven or independently discovered as well as where and how they have been used." - Bulletin of the American Mathematical Society "The mathematics community owes a huge debt of gratitude to Andrews and Berndt for undertaking the monumental task of producing a coherent presentation along with complete proofs of the chaotically written mathematical thoughts of Ramanujan during the last year of his life. Some 85 years after his death, beautiful "new" and useful results of Ramanujan continue to be brought to light." - Mathematical Reviews. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Sequences (Mathematics). 
650 0 |a Special functions. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Sequences, Series, Summability. 
650 2 4 |a Special Functions. 
700 1 |a Berndt, Bruce C.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387777658 
856 4 0 |u http://dx.doi.org/10.1007/b13290  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)