Monte Carlo and Quasi-Monte Carlo Sampling

Quasi–Monte Carlo methods have become an increasingly popular alternative to Monte Carlo methods over the last two decades. Their successful implementation on practical problems, especially in finance, has motivated the development of several new research areas within this field to which practitione...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Lemieux, Christiane (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2009.
Έκδοση:1.
Σειρά:Springer Series in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03716nam a22004335i 4500
001 978-0-387-78165-5
003 DE-He213
005 20151204160946.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 |a 9780387781655  |9 978-0-387-78165-5 
024 7 |a 10.1007/978-0-387-78165-5  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Lemieux, Christiane.  |e author. 
245 1 0 |a Monte Carlo and Quasi-Monte Carlo Sampling  |h [electronic resource] /  |c by Christiane Lemieux. 
250 |a 1. 
264 1 |a New York, NY :  |b Springer New York,  |c 2009. 
300 |a XIV, 373 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics,  |x 0172-7397 
505 0 |a The Monte Carlo Method -- Sampling from Known Distributions -- Pseudorandom Number Generators -- Variance Reduction Techniques -- Quasi–Monte Carlo Constructions -- Using Quasi#x2013;Monte Carlo in Practice -- Financial Applications -- Beyond Numerical Integration. 
520 |a Quasi–Monte Carlo methods have become an increasingly popular alternative to Monte Carlo methods over the last two decades. Their successful implementation on practical problems, especially in finance, has motivated the development of several new research areas within this field to which practitioners and researchers from various disciplines currently contribute. This book presents essential tools for using quasi–Monte Carlo sampling in practice. The first part of the book focuses on issues related to Monte Carlo methods—uniform and non-uniform random number generation, variance reduction techniques—but the material is presented to prepare the readers for the next step, which is to replace the random sampling inherent to Monte Carlo by quasi–random sampling. The second part of the book deals with this next step. Several aspects of quasi-Monte Carlo methods are covered, including constructions, randomizations, the use of ANOVA decompositions, and the concept of effective dimension. The third part of the book is devoted to applications in finance and more advanced statistical tools like Markov chain Monte Carlo and sequential Monte Carlo, with a discussion of their quasi–Monte Carlo counterpart. The prerequisites for reading this book are a basic knowledge of statistics and enough mathematical maturity to follow through the various techniques used throughout the book. This text is aimed at graduate students in statistics, management science, operations research, engineering, and applied mathematics. It should also be useful to practitioners who want to learn more about Monte Carlo and quasi–Monte Carlo methods and researchers interested in an up-to-date guide to these methods. Christiane Lemieux is an Associate Professor and the Associate Chair for Actuarial Science in the Department of Statistics and Actuarial Science at the University of Waterloo in Canada. She is an Associate of the Society of Actuaries and was the winner of a "Young Researcher Award in Information-Based Complexity" in 2004. 
650 0 |a Statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387781648 
830 0 |a Springer Series in Statistics,  |x 0172-7397 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-78165-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)