Optimization—Theory and Practice

Optimization is an important field in its own right but also plays a central role in numerous applied sciences, including operations research, management science, economics, finance, and engineering. Optimization — Theory and Practice offers a modern and well-balanced presentation of various optimiz...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Forst, Wilhelm (Συγγραφέας), Hoffmann, Dieter (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2010.
Σειρά:Springer Undergraduate Texts in Mathematics and Technology,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04374nam a22005535i 4500
001 978-0-387-78977-4
003 DE-He213
005 20151204171156.0
007 cr nn 008mamaa
008 100716s2010 xxu| s |||| 0|eng d
020 |a 9780387789774  |9 978-0-387-78977-4 
024 7 |a 10.1007/978-0-387-78977-4  |2 doi 
040 |d GrThAP 
050 4 |a QA402.5-402.6 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519.6  |2 23 
100 1 |a Forst, Wilhelm.  |e author. 
245 1 0 |a Optimization—Theory and Practice  |h [electronic resource] /  |c by Wilhelm Forst, Dieter Hoffmann. 
264 1 |a New York, NY :  |b Springer New York,  |c 2010. 
300 |a XVIII, 402 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Undergraduate Texts in Mathematics and Technology,  |x 1867-5506 
505 0 |a 1. Introduction: Examples of Optimization Problems, Historical Overview -- 2. Optimality Conditions: Convex Sets, Inequalities, Local First- and Second-Order Optimality Conditions, Duality -- 3. Unconstrained Optimization Problems: Elementary Search and Localization Methods, Descent Methods with Line Search, Trust Region Methods, Conjugate Gradient Methods, Quasi-Newton Methods -- 4. Linearly Constrained Optimization Problems: Linear and Quadratic Optimization, Projection Methods -- 5. Nonlinearly Constrained Optimization Methods: Penalty Methods, SQP Methods -- 6. Interior-Point Methods for Linear Optimization: The Central Path, Newton's Method for the Primal-Dual System, Path-Following Algorithms, Predictor-Corrector Methods -- 7. Semidefinite Optimization: Selected Special Cases, The S-Procedure, The Function log°det, Path-Following Methods, How to Solve SDO Problems?, Icing on the Cake: Pattern Separation via Ellipsoids -- 8. Global Optimization: Branch and Bound Methods, Cutting Plane Methods -- Appendices: A Second Look at the Constraint Qualifications, The Fritz John Condition, Optimization Software Tools for Teaching and Learning -- Bibliography -- Index of Symbols -- Subject Index. 
520 |a Optimization is an important field in its own right but also plays a central role in numerous applied sciences, including operations research, management science, economics, finance, and engineering. Optimization — Theory and Practice offers a modern and well-balanced presentation of various optimization techniques and their applications. The book's clear structure, sound theoretical basics complemented by insightful illustrations and instructive examples, makes it an ideal introductory textbook and provides the reader with a comprehensive foundation in one of the most fascinating and useful branches of mathematics. Notable features include: Detailed explanations of theoretic results accompanied by supporting algorithms and exercises, often supplemented by helpful hints or MATLAB®/MAPLE® code fragments; an overview of the MATLAB® Optimization Toolbox and demonstrations of its uses with selected examples; accessibility to readers with a knowledge of multi-dimensional calculus, linear algebra, and basic numerical methods. Written at an introductory level, this book is intended for advanced undergraduates and graduate students, but may also be used as a reference by academics and professionals in mathematics and the applied sciences. 
650 0 |a Mathematics. 
650 0 |a Computer programming. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Algebra. 
650 0 |a Computer mathematics. 
650 0 |a Mathematical optimization. 
650 1 4 |a Mathematics. 
650 2 4 |a Optimization. 
650 2 4 |a Algebra. 
650 2 4 |a Programming Techniques. 
650 2 4 |a Symbolic and Algebraic Manipulation. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Computational Science and Engineering. 
700 1 |a Hoffmann, Dieter.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387789767 
830 0 |a Springer Undergraduate Texts in Mathematics and Technology,  |x 1867-5506 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-78977-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)