Neuronal Noise

Neuronal Noise combines experimental, theoretical and computational results to show how noise is inherent to neuronal activity, and how noise can be important for neuronal computations.  The book covers many aspects of noise in neurons, with an emphasis on the largest source of noise: synaptic noise...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Destexhe, Alain (Συγγραφέας), Rudolph-Lilith, Michelle (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2012.
Σειρά:Springer Series in Computational Neuroscience ; 8
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02692nam a22004695i 4500
001 978-0-387-79020-6
003 DE-He213
005 20140224083740.0
007 cr nn 008mamaa
008 120105s2012 xxu| s |||| 0|eng d
020 |a 9780387790206  |9 978-0-387-79020-6 
024 7 |a 10.1007/978-0-387-79020-6  |2 doi 
040 |d GrThAP 
050 4 |a RC321-580 
072 7 |a PSAN  |2 bicssc 
072 7 |a MED057000  |2 bisacsh 
082 0 4 |a 612.8  |2 23 
100 1 |a Destexhe, Alain.  |e author. 
245 1 0 |a Neuronal Noise  |h [electronic resource] /  |c by Alain Destexhe, Michelle Rudolph-Lilith. 
264 1 |a Boston, MA :  |b Springer US,  |c 2012. 
300 |a XVIII, 458 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Computational Neuroscience ;  |v 8 
505 0 |a 1 Introduction -- 2 Basics -- 3 Synaptic noise -- 4 Models of synaptic noise -- 5 Integrative properties in the presence of noise6 Recreating synaptic noise using dynamic-clamp -- 7 The mathematics of synaptic noise -- 8 Analyzing synaptic noise -- 9 Case studies -- 10 Conclusions and perspectives A Numerical integration of stochastic differential equations -- B Distributed Generator Algorithm -- C The Fokker-Planck formalism -- D The RT-NEURON interface for dynamic-clamp -- References -- Index. 
520 |a Neuronal Noise combines experimental, theoretical and computational results to show how noise is inherent to neuronal activity, and how noise can be important for neuronal computations.  The book covers many aspects of noise in neurons, with an emphasis on the largest source of noise: synaptic noise. It provides students and young researchers with an overview of the important methods and concepts that have emerged from research in this area. It also provides the specialist with a summary of the large body of sometimes contrasting experimental data, and different theories proposed to explore the computational power that various forms of "noise" can confer to neurons. 
650 0 |a Medicine. 
650 0 |a Neurosciences. 
650 0 |a Neurobiology. 
650 1 4 |a Biomedicine. 
650 2 4 |a Neurosciences. 
650 2 4 |a Neurobiology. 
700 1 |a Rudolph-Lilith, Michelle.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387790190 
830 0 |a Springer Series in Computational Neuroscience ;  |v 8 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-79020-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBL 
950 |a Biomedical and Life Sciences (Springer-11642)