Principles and Models of Biological Transport

Principles and Models of Biological Transport, 2nd ed. Morton H. Friedman Transport processes are ubiquitous in the living organism, underlying nerve conduction and muscle contraction, digestion, kidney function and the nourishment of every cell in the body. The mechanisms by which these processes t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Friedman, Morton H. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2008.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04433nam a22004695i 4500
001 978-0-387-79240-8
003 DE-He213
005 20151204153859.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387792408  |9 978-0-387-79240-8 
024 7 |a 10.1007/978-0-387-79240-8  |2 doi 
040 |d GrThAP 
050 4 |a R856-857 
072 7 |a MQW  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
082 0 4 |a 610.28  |2 23 
100 1 |a Friedman, Morton H.  |e author. 
245 1 0 |a Principles and Models of Biological Transport  |h [electronic resource] /  |c by Morton H. Friedman. 
264 1 |a New York, NY :  |b Springer New York,  |c 2008. 
300 |a XVIII, 510 p. 150 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Equilibrium Thermodynamics -- Free Diffusion -- The Cell -- Facilitated Diffusion: Channels and Carriers -- Active Transport -- Nonequilibrium Thermodynamics -- Models of Transport Across Cell Membranes -- Regulation and Feedback -- Excitable Cells -- Epithelial Transport -- Gas Transport. 
520 |a Principles and Models of Biological Transport, 2nd ed. Morton H. Friedman Transport processes are ubiquitous in the living organism, underlying nerve conduction and muscle contraction, digestion, kidney function and the nourishment of every cell in the body. The mechanisms by which these processes take place, and the models that describe them, are the subject of Principles and Models of Biological Transport. Beginning with the principles of thermodynamics and the organization of the cell, the text discusses each of the transport mechanisms found in the organism, their structure at the molecular level, their function and features, and their integration into tissues and organs. Courses based on the text will be of interest to students who wish to understand the fundamentals of biological transport and the models that describe it. It will provide readers with the knowledge necessary to interpret transport experiments in biological systems and to predict performance or behavior from transport data. Advanced undergraduates or graduate students in Biomedical Engineering or Physiology and Biophysics will find this book useful, as will other engineers (Mechanical, Chemical, Environmental) who have some familiarity with biology, or Biology students who prefer a more quantitative approach to the subject. The new edition includes numerous figures and references, and problems at the end of each chapter. It is supported by an open web site http://biotrans.pratt.duke.edu/ to facilitate its use in class. The web site allows faculty users to share syllabi based on the text and to post additional problems that can serve as illustrations or be given to students; all users are welcome to note corrections and suggest improvements in the text, and to add new material to the knowledge base. The web site is intended to support a "community of the book" that can maintain its currency and value into the future. About the author: Morton H. Friedman is Professor and former Chair of the Biomedical Engineering Department at Duke University and Professor of Medicine in the Duke University Medical Center. He originated the biological transport course in the Department of Biomedical Engineering at Johns Hopkins University and taught at The Ohio State University prior to arriving at Duke. He is a Fellow of the American Association for the Advancement of Science, the Biomedical Engineering Society, and the American Society of Mechanical Engineers, a Founding Fellow of the American Institute for Medical and Biological Engineering, and recipient of the H.R. Lissner medal and the Richard Skalak award of the American Society of Mechanical Engineers. 
650 0 |a Engineering. 
650 0 |a Life sciences. 
650 0 |a Biochemistry. 
650 0 |a Biomedical engineering. 
650 1 4 |a Engineering. 
650 2 4 |a Biomedical Engineering. 
650 2 4 |a Biochemistry, general. 
650 2 4 |a Biomedicine general. 
650 2 4 |a Life Sciences, general. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387792392 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-79240-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)