Data Mining for Business Applications

Data Mining for Business Applications presents state-of-the-art data mining research and development related to methodologies, techniques, approaches and successful applications. The contributions of this book mark a paradigm shift from "data-centered pattern mining" to "domain-driven...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Cao, Longbing (Επιμελητής έκδοσης), Yu, Philip S. (Επιμελητής έκδοσης), Zhang, Chengqi (Επιμελητής έκδοσης), Zhang, Huaifeng (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2009.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Domain Driven KDD Methodology
  • to Domain Driven Data Mining
  • Post-processing Data Mining Models for Actionability
  • On Mining Maximal Pattern-Based Clusters
  • Role of Human Intelligence in Domain Driven Data Mining
  • Ontology Mining for Personalized Search
  • Novel KDD Domains & Techniques
  • Data Mining Applications in Social Security
  • Security Data Mining: A Survey Introducing Tamper-Resistance
  • A Domain Driven Mining Algorithm on Gene Sequence Clustering
  • Domain Driven Tree Mining of Semi-structured Mental Health Information
  • Text Mining for Real-time Ontology Evolution
  • Microarray Data Mining: Selecting Trustworthy Genes with Gene Feature Ranking
  • Blog Data Mining for Cyber Security Threats
  • Blog Data Mining: The Predictive Power of Sentiments
  • Web Mining: Extracting Knowledge from the World Wide Web
  • DAG Mining for Code Compaction
  • A Framework for Context-Aware Trajectory
  • Census Data Mining for Land Use Classification
  • Visual Data Mining for Developing Competitive Strategies in Higher Education
  • Data Mining For Robust Flight Scheduling
  • Data Mining for Algorithmic Asset Management.