Groups, Matrices, and Vector Spaces A Group Theoretic Approach to Linear Algebra /

This unique text provides a geometric approach to group theory and linear algebra, bringing to light the interesting ways in which these subjects interact. Requiring few prerequisites beyond understanding the notion of a proof, the text aims to give students a strong foundation in both geometry and...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Carrell, James B. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03894nam a22005055i 4500
001 978-0-387-79428-0
003 DE-He213
005 20170902143549.0
007 cr nn 008mamaa
008 170902s2017 xxu| s |||| 0|eng d
020 |a 9780387794280  |9 978-0-387-79428-0 
024 7 |a 10.1007/978-0-387-79428-0  |2 doi 
040 |d GrThAP 
050 4 |a QA251.3 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.44  |2 23 
100 1 |a Carrell, James B.  |e author. 
245 1 0 |a Groups, Matrices, and Vector Spaces  |h [electronic resource] :  |b A Group Theoretic Approach to Linear Algebra /  |c by James B. Carrell. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2017. 
300 |a XV, 410 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1. Preliminaries -- 2. Groups and Fields: The Two Fundamental Notions of Algebra -- 3. Vector Spaces -- 4. Linear Mappings -- 5. Eigentheory -- 6. Unitary Diagonalization and Quadratic Forms -- 7. The Structure Theory of Linear Mappings -- 8. Theorems on Group Theory -- 9. Linear Algebraic Groups: An Introduction -- Bibliography -- Index. 
520 |a This unique text provides a geometric approach to group theory and linear algebra, bringing to light the interesting ways in which these subjects interact. Requiring few prerequisites beyond understanding the notion of a proof, the text aims to give students a strong foundation in both geometry and algebra. Starting with preliminaries (relations, elementary combinatorics, and induction), the book then proceeds to the core topics: the elements of the theory of groups and fields (Lagrange's Theorem, cosets, the complex numbers and the prime fields), matrix theory and matrix groups, determinants, vector spaces, linear mappings, eigentheory and diagonalization, Jordan decomposition and normal form, normal matrices, and quadratic forms. The final two chapters consist of a more intensive look at group theory, emphasizing orbit stabilizer methods, and an introduction to linear algebraic groups, which enriches the notion of a matrix group. Applications involving symm etry groups, determinants, linear coding theory and cryptography are interwoven throughout. Each section ends with ample practice problems assisting the reader to better understand the material.  Some of the applications are illustrated in the chapter appendices. The author's unique melding of topics evolved from a two semester course that he taught at the University of British Columbia consisting of an undergraduate honors course on abstract linear algebra and a similar course on the theory of groups. The combined content from both makes this rare text ideal for a year-long course, covering more material than most linear algebra texts. It is also optimal for independent study and as a supplementary text for various professional applications. Advanced undergraduate or graduate students in mathematics, physics, computer science and engineering will find this book both useful and enjoyable. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Group theory. 
650 0 |a Matrix theory. 
650 0 |a Algebra. 
650 1 4 |a Mathematics. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Algebraic Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387794273 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-79428-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)