Symmetry, Representations, and Invariants

Symmetry is a key ingredient in many mathematical, physical, and biological theories. Using representation theory and invariant theory to analyze the symmetries that arise from group actions, and with strong emphasis on the geometry and basic theory of Lie groups and Lie algebras, Symmetry, Represen...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Goodman, Roe (Συγγραφέας), Wallach, Nolan R. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2009.
Σειρά:Graduate Texts in Mathematics, 255
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03828nam a22005655i 4500
001 978-0-387-79852-3
003 DE-He213
005 20151204191142.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 |a 9780387798523  |9 978-0-387-79852-3 
024 7 |a 10.1007/978-0-387-79852-3  |2 doi 
040 |d GrThAP 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.2  |2 23 
100 1 |a Goodman, Roe.  |e author. 
245 1 0 |a Symmetry, Representations, and Invariants  |h [electronic resource] /  |c by Roe Goodman, Nolan R. Wallach. 
264 1 |a New York, NY :  |b Springer New York,  |c 2009. 
300 |a XX, 716 p. 10 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 255 
505 0 |a Lie Groups and Algebraic Groups -- Structure of Classical Groups -- Highest-Weight Theory -- Algebras and Representations -- Classical Invariant Theory -- Spinors -- Character Formulas -- Branching Laws -- Tensor Representations of GL(V) -- Tensor Representations of O(V) and Sp(V) -- Algebraic Groups and Homogeneous Spaces -- Representations on Spaces of Regular Functions. 
520 |a Symmetry is a key ingredient in many mathematical, physical, and biological theories. Using representation theory and invariant theory to analyze the symmetries that arise from group actions, and with strong emphasis on the geometry and basic theory of Lie groups and Lie algebras, Symmetry, Representations, and Invariants is a significant reworking of an earlier highly-acclaimed work by the authors. The result is a comprehensive introduction to Lie theory, representation theory, invariant theory, and algebraic groups, in a new presentation that is more accessible to students and includes a broader range of applications. The philosophy of the earlier book is retained, i.e., presenting the principal theorems of representation theory for the classical matrix groups as motivation for the general theory of reductive groups. The wealth of examples and discussion prepares the reader for the complete arguments now given in the general case. Key Features of Symmetry, Representations, and Invariants: • Early chapters suitable for honors undergraduate or beginning graduate courses, requiring only linear algebra, basic abstract algebra, and advanced calculus • Applications to geometry (curvature tensors), topology (Jones polynomial via symmetry), and combinatorics (symmetric group and Young tableaux) • Self-contained chapters, appendices, comprehensive bibliography • More than 350 exercises (most with detailed hints for solutions) further explore main concepts • Serves as an excellent main text for a one-year course in Lie group theory • Benefits physicists as well as mathematicians as a reference work. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Group theory. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Geometry. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Algebra. 
650 2 4 |a Geometry. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a General Algebraic Systems. 
700 1 |a Wallach, Nolan R.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387798516 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 255 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-79852-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)