Incorporating Knowledge Sources into Statistical Speech Recognition

Incorporating Knowledge Sources into Statistical Speech Recognition offers solutions for enhancing the robustness of a statistical automatic speech recognition (ASR) system by incorporating various additional knowledge sources while keeping the training and recognition effort feasible. The authors p...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Minker, Wolfgang (Συγγραφέας), Nakamura, Satoshi (Συγγραφέας), Markov, Konstantin (Συγγραφέας), Sakti, Sakriani (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2009.
Σειρά:Lecture Notes in Electrical Engineering, 42
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03445nam a22005895i 4500
001 978-0-387-85830-2
003 DE-He213
005 20151204180938.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 |a 9780387858302  |9 978-0-387-85830-2 
024 7 |a 10.1007/978-0-387-85830-2  |2 doi 
040 |d GrThAP 
050 4 |a TK5102.9 
050 4 |a TA1637-1638 
050 4 |a TK7882.S65 
072 7 |a TTBM  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a COM073000  |2 bisacsh 
082 0 4 |a 621.382  |2 23 
100 1 |a Minker, Wolfgang.  |e author. 
245 1 0 |a Incorporating Knowledge Sources into Statistical Speech Recognition  |h [electronic resource] /  |c by Wolfgang Minker, Satoshi Nakamura, Konstantin Markov, Sakriani Sakti. 
264 1 |a Boston, MA :  |b Springer US,  |c 2009. 
300 |a XXIV, 196 p. 100 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Electrical Engineering,  |x 1876-1100 ;  |v 42 
505 0 |a and Book Overview -- Statistical Speech Recognition -- Graphical Framework to Incorporate Knowledge Sources -- Speech Recognition Using GFIKS -- Conclusions and Future Directions. 
520 |a Incorporating Knowledge Sources into Statistical Speech Recognition offers solutions for enhancing the robustness of a statistical automatic speech recognition (ASR) system by incorporating various additional knowledge sources while keeping the training and recognition effort feasible. The authors provide an efficient general framework for incorporating knowledge sources into state-of-the-art statistical ASR systems. This framework, which is called GFIKS (graphical framework to incorporate additional knowledge sources), was designed by utilizing the concept of the Bayesian network (BN) framework. This framework allows probabilistic relationships among different information sources to be learned, various kinds of knowledge sources to be incorporated, and a probabilistic function of the model to be formulated. Incorporating Knowledge Sources into Statistical Speech Recognition demonstrates how the statistical speech recognition system may incorporate additional information sources by utilizing GFIKS at different levels of ASR. The incorporation of various knowledge sources, including background noises, accent, gender and wide phonetic knowledge information, in modeling is discussed theoretically and analyzed experimentally. 
650 0 |a Engineering. 
650 0 |a Computer communication systems. 
650 0 |a Acoustics. 
650 0 |a Electrical engineering. 
650 1 4 |a Engineering. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Acoustics. 
650 2 4 |a Communications Engineering, Networks. 
650 2 4 |a Computer Communication Networks. 
650 2 4 |a Electrical Engineering. 
700 1 |a Nakamura, Satoshi.  |e author. 
700 1 |a Markov, Konstantin.  |e author. 
700 1 |a Sakti, Sakriani.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387858296 
830 0 |a Lecture Notes in Electrical Engineering,  |x 1876-1100 ;  |v 42 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-85830-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)