Generalized Principal Component Analysis

This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challen...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Vidal, René (Συγγραφέας), Ma, Yi (Συγγραφέας), Sastry, S.S (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2016.
Σειρά:Interdisciplinary Applied Mathematics, 40
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04074nam a22005655i 4500
001 978-0-387-87811-9
003 DE-He213
005 20170512142346.0
007 cr nn 008mamaa
008 160411s2016 xxu| s |||| 0|eng d
020 |a 9780387878119  |9 978-0-387-87811-9 
024 7 |a 10.1007/978-0-387-87811-9  |2 doi 
040 |d GrThAP 
050 4 |a Q295 
050 4 |a QA402.3-402.37 
072 7 |a GPFC  |2 bicssc 
072 7 |a SCI064000  |2 bisacsh 
072 7 |a TEC004000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Vidal, René.  |e author. 
245 1 0 |a Generalized Principal Component Analysis  |h [electronic resource] /  |c by René Vidal, Yi Ma, S.S. Sastry. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2016. 
300 |a XXXII, 566 p. 121 illus., 83 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Interdisciplinary Applied Mathematics,  |x 0939-6047 ;  |v 40 
505 0 |a Preface -- Acknowledgments -- Glossary of Notation -- Introduction -- I Modeling Data with Single Subspace -- Principal Component Analysis -- Robust Principal Component Analysis -- Nonlinear and Nonparametric Extensions -- II Modeling Data with Multiple Subspaces -- Algebraic-Geometric Methods -- Statistical Methods -- Spectral Methods -- Sparse and Low-Rank Methods -- III Applications -- Image Representation -- Image Segmentation -- Motion Segmentation -- Hybrid System Identification -- Final Words -- Appendices -- References -- Index. 
520 |a This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc. This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book. René Vidal is a Professor of Biomedical Engineering and Director of the Vision Dynamics and Learning Lab at The Johns Hopkins University. Yi Ma is Executive Dean and Professor at the School of Information Science and Technology at ShanghaiTech University. S. Shankar Sastry is Dean of the College of Engineering, Professor of Electrical Engineering and Computer Science and Professor of Bioengineering at the University of California, Berkeley. 
650 0 |a Mathematics. 
650 0 |a Image processing. 
650 0 |a Algebraic geometry. 
650 0 |a System theory. 
650 0 |a Statistics. 
650 1 4 |a Mathematics. 
650 2 4 |a Systems Theory, Control. 
650 2 4 |a Image Processing and Computer Vision. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
650 2 4 |a Algebraic Geometry. 
700 1 |a Ma, Yi.  |e author. 
700 1 |a Sastry, S.S.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387878102 
830 0 |a Interdisciplinary Applied Mathematics,  |x 0939-6047 ;  |v 40 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-87811-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)