Generalized Principal Component Analysis

This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challen...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Vidal, René (Συγγραφέας), Ma, Yi (Συγγραφέας), Sastry, S.S (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2016.
Σειρά:Interdisciplinary Applied Mathematics, 40
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Preface
  • Acknowledgments
  • Glossary of Notation
  • Introduction
  • I Modeling Data with Single Subspace
  • Principal Component Analysis
  • Robust Principal Component Analysis
  • Nonlinear and Nonparametric Extensions
  • II Modeling Data with Multiple Subspaces
  • Algebraic-Geometric Methods
  • Statistical Methods
  • Spectral Methods
  • Sparse and Low-Rank Methods
  • III Applications
  • Image Representation
  • Image Segmentation
  • Motion Segmentation
  • Hybrid System Identification
  • Final Words
  • Appendices
  • References
  • Index.