Hyperbolic Partial Differential Equations

Serge Alinhac (1948–) received his PhD from l'Université Paris-Sud XI (Orsay). After teaching at l'Université Paris Diderot VII and Purdue University, he has been a professor of mathematics at l'Université Paris-Sud XI (Orsay) since 1978. He is the author of Blowup for Nonlinear Hyper...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Alinhac, Serge (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2009.
Σειρά:Universitext
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03105nam a22004935i 4500
001 978-0-387-87823-2
003 DE-He213
005 20151204151747.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 |a 9780387878232  |9 978-0-387-87823-2 
024 7 |a 10.1007/978-0-387-87823-2  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Alinhac, Serge.  |e author. 
245 1 0 |a Hyperbolic Partial Differential Equations  |h [electronic resource] /  |c by Serge Alinhac. 
264 1 |a New York, NY :  |b Springer New York,  |c 2009. 
300 |a XII, 150 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext 
505 0 |a Vector Fields and Integral Curves -- Operators and Systems in the Plane -- Nonlinear First Order Equations -- Conservation Laws in One-Space Dimension -- The Wave Equation -- Energy Inequalities for the Wave Equation -- Variable Coefficient Wave Equations and Systems. 
520 |a Serge Alinhac (1948–) received his PhD from l'Université Paris-Sud XI (Orsay). After teaching at l'Université Paris Diderot VII and Purdue University, he has been a professor of mathematics at l'Université Paris-Sud XI (Orsay) since 1978. He is the author of Blowup for Nonlinear Hyperbolic Equations (Birkhäuser, 1995) and Pseudo-differential Operators and the Nash–Moser Theorem (with P. Gérard, American Mathematical Society, 2007). His primary areas of research are linear and nonlinear partial differential equations. This excellent introduction to hyperbolic differential equations is devoted to linear equations and symmetric systems, as well as conservation laws. The book is divided into two parts. The first, which is intuitive and easy to visualize, includes all aspects of the theory involving vector fields and integral curves; the second describes the wave equation and its perturbations for two- or three-space dimensions. Over 100 exercises are included, as well as "do it yourself" instructions for the proofs of many theorems. Only an understanding of differential calculus is required. Notes at the end of the self-contained chapters, as well as references at the end of the book, enable ease-of-use for both the student and the independent researcher. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Partial differential equations. 
650 0 |a Potential theory (Mathematics). 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Potential Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387878225 
830 0 |a Universitext 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-87823-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)