|
|
|
|
LEADER |
03389nam a22004815i 4500 |
001 |
978-0-387-87857-7 |
003 |
DE-He213 |
005 |
20151204180957.0 |
007 |
cr nn 008mamaa |
008 |
101013s2011 xxu| s |||| 0|eng d |
020 |
|
|
|a 9780387878577
|9 978-0-387-87857-7
|
024 |
7 |
|
|a 10.1007/978-0-387-87857-7
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a QA21-27
|
072 |
|
7 |
|a PBX
|2 bicssc
|
072 |
|
7 |
|a MAT015000
|2 bisacsh
|
082 |
0 |
4 |
|a 510.9
|2 23
|
100 |
1 |
|
|a Fischer, Hans.
|e author.
|
245 |
1 |
2 |
|a A History of the Central Limit Theorem
|h [electronic resource] :
|b From Classical to Modern Probability Theory /
|c by Hans Fischer.
|
264 |
|
1 |
|a New York, NY :
|b Springer New York,
|c 2011.
|
300 |
|
|
|a XVI, 402 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Sources and Studies in the History of Mathematics and Physical Sciences
|
505 |
0 |
|
|a Preface -- Introduction -- The central limit theorem from laplace to cauchy: changes in stochastic objectives and in analytical methods -- The hypothesis of elementary errors -- Chebyshev's and markov's contributions -- The way towards modern probability -- General limit problems -- Conclusion: the central limit theorem as a link between classical and modern probability -- Index -- Bibliography.
|
520 |
|
|
|a This study aims to embed the history of the central limit theorem within the history of the development of probability theory from its classical to its modern shape, and, more generally, within the corresponding development of mathematics. The history of the central limit theorem is not only expressed in light of "technical" achievement, but is also tied to the intellectual scope of its advancement. The history starts with Laplace's 1810 approximation to distributions of linear combinations of large numbers of independent random variables and its modifications by Poisson, Dirichlet, and Cauchy, and it proceeds up to the discussion of limit theorems in metric spaces by Donsker and Mourier around 1950. This self-contained exposition additionally describes the historical development of analytical probability theory and its tools, such as characteristic functions or moments. The importance of historical connections between the history of analysis and the history of probability theory is demonstrated in great detail. With a thorough discussion of mathematical concepts and ideas of proofs, the reader will be able to understand the mathematical details in light of contemporary development. Special terminology and notations of probability and statistics are used in a modest way and explained in historical context.
|
650 |
|
0 |
|a Mathematics.
|
650 |
|
0 |
|a History.
|
650 |
|
0 |
|a Probabilities.
|
650 |
|
0 |
|a Statistics.
|
650 |
1 |
4 |
|a Mathematics.
|
650 |
2 |
4 |
|a History of Mathematical Sciences.
|
650 |
2 |
4 |
|a Probability Theory and Stochastic Processes.
|
650 |
2 |
4 |
|a Statistics, general.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9780387878560
|
830 |
|
0 |
|a Sources and Studies in the History of Mathematics and Physical Sciences
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/978-0-387-87857-7
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-SMA
|
950 |
|
|
|a Mathematics and Statistics (Springer-11649)
|