Theory of Stochastic Processes With Applications to Financial Mathematics and Risk Theory /

This book is a collection of exercises covering all the main topics in the modern theory of stochastic processes and its applications, including finance, actuarial mathematics, queuing theory, and risk theory. The aim of this book is to provide the reader with the theoretical and practical material...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Gusak, Dmytro (Συγγραφέας), Kukush, Alexander (Συγγραφέας), Kulik, Alexey (Συγγραφέας), Mishura, Yuliya (Συγγραφέας), Pilipenko, Andrey (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2010.
Σειρά:Problem Books in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04455nam a22005775i 4500
001 978-0-387-87862-1
003 DE-He213
005 20151204161424.0
007 cr nn 008mamaa
008 100710s2010 xxu| s |||| 0|eng d
020 |a 9780387878621  |9 978-0-387-87862-1 
024 7 |a 10.1007/978-0-387-87862-1  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Gusak, Dmytro.  |e author. 
245 1 0 |a Theory of Stochastic Processes  |h [electronic resource] :  |b With Applications to Financial Mathematics and Risk Theory /  |c by Dmytro Gusak, Alexander Kukush, Alexey Kulik, Yuliya Mishura, Andrey Pilipenko. 
264 1 |a New York, NY :  |b Springer New York,  |c 2010. 
300 |a XII, 376 p. 8 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Problem Books in Mathematics,  |x 0941-3502 
505 0 |a Definition of stochastic process. Cylinder #x03C3;-algebra, finite-dimensional distributions, the Kolmogorov theorem -- Characteristics of a stochastic process. Mean and covariance functions. Characteristic functions -- Trajectories. Modifications. Filtrations -- Continuity. Differentiability. Integrability -- Stochastic processes with independent increments. Wiener and Poisson processes. Poisson point measures -- Gaussian processes -- Martingales and related processes in discrete and continuous time. Stopping times -- Stationary discrete- and continuous-time processes. Stochastic integral over measure with orthogonal values -- Prediction and interpolation -- Markov chains: Discrete and continuous time -- Renewal theory. Queueing theory -- Markov and diffusion processes -- It#x00F4; stochastic integral. It#x00F4; formula. Tanaka formula -- Stochastic differential equations -- Optimal stopping of random sequences and processes -- Measures in a functional spaces. Weak convergence, probability metrics. Functional limit theorems -- Statistics of stochastic processes -- Stochastic processes in financial mathematics (discrete time) -- Stochastic processes in financial mathematics (continuous time) -- Basic functionals of the risk theory. 
520 |a This book is a collection of exercises covering all the main topics in the modern theory of stochastic processes and its applications, including finance, actuarial mathematics, queuing theory, and risk theory. The aim of this book is to provide the reader with the theoretical and practical material necessary for deeper understanding of the main topics in the theory of stochastic processes and its related fields. The book is divided into chapters according to the various topics. Each chapter contains problems, hints, solutions, as well as a self-contained theoretical part which gives all the necessary material for solving the problems. References to the literature are also given. The exercises have various levels of complexity and vary from simple ones, useful for students studying basic notions and technique, to very advanced ones that reveal some important theoretical facts and constructions. This book is one of the largest collections of problems in the theory of stochastic processes and its applications. The problems in this book can be useful for undergraduate and graduate students, as well as for specialists in the theory of stochastic processes. 
650 0 |a Mathematics. 
650 0 |a Business mathematics. 
650 0 |a Actuarial science. 
650 0 |a Probabilities. 
650 0 |a Statistics. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Actuarial Sciences. 
650 2 4 |a Business Mathematics. 
650 2 4 |a Statistics for Business/Economics/Mathematical Finance/Insurance. 
700 1 |a Kukush, Alexander.  |e author. 
700 1 |a Kulik, Alexey.  |e author. 
700 1 |a Mishura, Yuliya.  |e author. 
700 1 |a Pilipenko, Andrey.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387878614 
830 0 |a Problem Books in Mathematics,  |x 0941-3502 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-87862-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)