Statistical Analysis of Network Data Methods and Models /

In the past decade, the study of networks has increased dramatically. Researchers from across the sciences—including biology and bioinformatics, computer science, economics, engineering, mathematics, physics, sociology, and statistics—are more and more involved with the collection and statistical an...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kolaczyk, Eric D. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2009.
Σειρά:Springer Series in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04315nam a22005655i 4500
001 978-0-387-88146-1
003 DE-He213
005 20151204142456.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 |a 9780387881461  |9 978-0-387-88146-1 
024 7 |a 10.1007/978-0-387-88146-1  |2 doi 
040 |d GrThAP 
050 4 |a TK5105.5-5105.9 
072 7 |a UKN  |2 bicssc 
072 7 |a COM075000  |2 bisacsh 
082 0 4 |a 004.6  |2 23 
100 1 |a Kolaczyk, Eric D.  |e author. 
245 1 0 |a Statistical Analysis of Network Data  |h [electronic resource] :  |b Methods and Models /  |c by Eric D. Kolaczyk. 
264 1 |a New York, NY :  |b Springer New York,  |c 2009. 
300 |a XII, 386 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics,  |x 0172-7397 
505 0 |a and Overview -- Preliminaries -- Mapping Networks -- Descriptive Analysis of Network Graph Characteristics -- Sampling and Estimation in Network Graphs -- Models for Network Graphs -- Network Topology Inference -- Modeling and Prediction for Processes on Network Graphs -- Analysis of Network Flow Data -- Graphical Models. 
520 |a In the past decade, the study of networks has increased dramatically. Researchers from across the sciences—including biology and bioinformatics, computer science, economics, engineering, mathematics, physics, sociology, and statistics—are more and more involved with the collection and statistical analysis of network-indexed data. As a result, statistical methods and models are being developed in this area at a furious pace, with contributions coming from a wide spectrum of disciplines. This book provides an up-to-date treatment of the foundations common to the statistical analysis of network data across the disciplines. The material is organized according to a statistical taxonomy, although the presentation entails a conscious balance of concepts versus mathematics. In addition, the examples—including extended cases studies—are drawn widely from the literature. This book should be of substantial interest both to statisticians and to anyone else working in the area of ‘network science.’ The coverage of topics in this book is broad, but unfolds in a systematic manner, moving from descriptive (or exploratory) methods, to sampling, to modeling and inference. Specific topics include network mapping, characterization of network structure, network sampling, and the modeling, inference, and prediction of networks, network processes, and network flows. This book is the first such resource to present material on all of these core topics in one place. Eric Kolaczyk is a professor of statistics, and Director of the Program in Statistics, in the Department of Mathematics and Statistics at Boston University, where he also is an affiliated faculty member in the Center for Biodynamics, the Program in Bioinformatics, and the Division of Systems Engineering. His publications on network-based topics include work ranging from the detection of anomalous traffic patterns in computer networks to the prediction of biological function in networks of interacting proteins to the characterization of influence of groups of actors in social networks. 
650 0 |a Computer science. 
650 0 |a Computer communication systems. 
650 0 |a Data mining. 
650 0 |a Bioinformatics. 
650 0 |a Probabilities. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 0 |a Statistics. 
650 1 4 |a Computer Science. 
650 2 4 |a Computer Communication Networks. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Bioinformatics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387881454 
830 0 |a Springer Series in Statistics,  |x 0172-7397 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-88146-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)