The Mathematics of Medical Imaging A Beginner’s Guide /

A Beginner's Guide to the Mathematics of Medical Imaging presents the basic mathematics of computerized tomography – the CT scan – for an audience of undergraduates in mathematics and engineering. Assuming no prior background in advanced mathematical analysis, topics such as the Fourier transfo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Feeman, Timothy G. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2010.
Σειρά:Springer Undergraduate Texts in Mathematics and Technology,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03144nam a22005655i 4500
001 978-0-387-92712-1
003 DE-He213
005 20151111151614.0
007 cr nn 008mamaa
008 100715s2010 xxu| s |||| 0|eng d
020 |a 9780387927121  |9 978-0-387-92712-1 
024 7 |a 10.1007/978-0-387-92712-1  |2 doi 
040 |d GrThAP 
050 4 |a QA319-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.7  |2 23 
100 1 |a Feeman, Timothy G.  |e author. 
245 1 4 |a The Mathematics of Medical Imaging  |h [electronic resource] :  |b A Beginner’s Guide /  |c by Timothy G. Feeman. 
264 1 |a New York, NY :  |b Springer New York,  |c 2010. 
300 |a XII, 141 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Undergraduate Texts in Mathematics and Technology,  |x 1867-5506 
505 0 |a X-rays -- The Radon Transform -- Back Projection -- Complex Numbers -- The Fourier Transform -- Two Big Theorems -- Filters and Convolution -- Discrete Image Reconstruction -- Algebraic Reconstruction Techniques -- MRI#x2014;An Overview. 
520 |a A Beginner's Guide to the Mathematics of Medical Imaging presents the basic mathematics of computerized tomography – the CT scan – for an audience of undergraduates in mathematics and engineering. Assuming no prior background in advanced mathematical analysis, topics such as the Fourier transform, sampling, and discrete approximation algorithms are introduced from scratch and are developed within the context of medical imaging. A chapter on magnetic resonance imaging focuses on manipulation of the Bloch equation, the system of differential equations that is the foundation of this important technology. The text is self-contained with a range of practical exercises, topics for further study, and an ample bibliography, making it ideal for use in an undergraduate course in applied or engineering mathematics, or by practitioners in radiology who want to know more about the mathematical foundations of their field. 
650 0 |a Mathematics. 
650 0 |a Radiology. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Computer graphics. 
650 0 |a Functional analysis. 
650 0 |a Integral transforms. 
650 0 |a Operational calculus. 
650 0 |a Biomedical engineering. 
650 1 4 |a Mathematics. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Imaging / Radiology. 
650 2 4 |a Integral Transforms, Operational Calculus. 
650 2 4 |a Math Applications in Computer Science. 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
650 2 4 |a Biomedical Engineering. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387927114 
830 0 |a Springer Undergraduate Texts in Mathematics and Technology,  |x 1867-5506 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-92712-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)