Fractional Differentiation Inequalities

Fractional differentiation inequalities are by themselves an important area of research. They have many applications in pure and applied mathematics and many other applied sciences. One of the most important applications is in establishing the uniqueness of a solution in fractional differential equa...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Anastassiou, George A. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2009.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04774nam a22004935i 4500
001 978-0-387-98128-4
003 DE-He213
005 20151204185537.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 |a 9780387981284  |9 978-0-387-98128-4 
024 7 |a 10.1007/978-0-387-98128-4  |2 doi 
040 |d GrThAP 
050 4 |a QA372 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.352  |2 23 
100 1 |a Anastassiou, George A.  |e author. 
245 1 0 |a Fractional Differentiation Inequalities  |h [electronic resource] /  |c by George A. Anastassiou. 
264 1 |a New York, NY :  |b Springer New York,  |c 2009. 
300 |a XIV, 686 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Opial#x2013;Type Inequalities for Functions and Their Ordinary and Canavati Fractional Derivatives -- Canavati Fractional Opial#x2013;Type Inequalities and Fractional Differential Equations -- Riemann#x2014;Liouville Opial#x2014;type Inequalities for Fractional Derivatives -- Opial#x2013;type #x2013;Inequalities for Riemann#x2014;Liouville Fractional Derivatives -- Opial#x2013;Type Inequalities Involving Canavati Fractional Derivatives of Two Functions and Applications -- Opial#x2013;Type Inequalities for Riemann#x2014;Liouville Fractional Derivatives of Two Functions with Applications -- Canavati Fractional Opial#x2013;Type Inequalities for Several Functions and Applications -- Riemann#x2014;Liouville Fractional#x2013;Opial Type Inequalities for Several Functions and Applications -- Converse Canavati Fractional Opial#x2013;Type Inequalities for Several Functions -- Converse Riemann#x2014;Liouville Fractional Opial#x2013;Type Inequalities for Several Functions -- Multivariate Canavati Fractional Taylor Formula -- Multivariate Caputo Fractional Taylor Formula -- Canavati Fractional Multivariate Opial#x2013;Type Inequalities on Spherical Shells -- Riemann#x2014;Liouville Fractional Multivariate Opial#x2013;type inequalities over a spherical shell -- Caputo Fractional Multivariate Opial#x2013;Type Inequalities over a Spherical Shell -- Poincar#x00E9;#x2013;Type Fractional Inequalities -- Various Sobolev#x2013;Type Fractional Inequalities -- General Hilbert#x2014;Pachpatte#x2013;Type Integral Inequalities -- General Multivariate Hilbert#x2014;Pachpatte#x2013;Type Integral Inequalities -- Other Hilbert#x2014;Pachpatte#x2013;Type Fractional Integral Inequalities -- Canavati Fractional and Other Approximation of Csiszar#x2019;s #x2013;Divergence -- Caputo and Riemann#x2014;Liouville Fractional Approximation of Csiszar#x2019;s #x2013;Divergence -- Canavati Fractional Ostrowski#x2013;Type Inequalities -- Multivariate Canavati Fractional Ostrowski#x2013;Type Inequalities -- Caputo Fractional Ostrowski#x2013;Type Inequalities. 
520 |a Fractional differentiation inequalities are by themselves an important area of research. They have many applications in pure and applied mathematics and many other applied sciences. One of the most important applications is in establishing the uniqueness of a solution in fractional differential equations and systems and in fractional partial differential equations. They also provide upper bounds to the solutions of the above equations. In this book the author presents the Opial, Poincaré, Sobolev, Hilbert, and Ostrowski fractional differentiation inequalities. Results for the above are derived using three different types of fractional derivatives, namely by Canavati, Riemann-Liouville and Caputo. The univariate and multivariate cases are both examined. Each chapter is self-contained. The theory is presented systematically along with the applications. The application to information theory is also examined. This monograph is suitable for researchers and graduate students in pure mathematics. Applied mathematicians, engineers, and other applied scientists will also find this book useful. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Integral transforms. 
650 0 |a Operational calculus. 
650 0 |a Differential equations. 
650 0 |a Partial differential equations. 
650 1 4 |a Mathematics. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Integral Transforms, Operational Calculus. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387981277 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-98128-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)