Principles and Theory for Data Mining and Machine Learning
This book is a thorough introduction to the most important topics in data mining and machine learning. It begins with a detailed review of classical function estimation and proceeds with chapters on nonlinear regression, classification, and ensemble methods. The final chapters focus on clustering, d...
Κύριοι συγγραφείς: | Clarke, Bertrand (Συγγραφέας), Fokoue, Ernest (Συγγραφέας), Zhang, Hao Helen (Συγγραφέας) |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | SpringerLink (Online service) |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
New York, NY :
Springer New York,
2009.
|
Σειρά: | Springer Series in Statistics,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Παρόμοια τεκμήρια
-
The Elements of Statistical Learning Data Mining, Inference, and Prediction /
ανά: Hastie, Trevor, κ.ά.
Έκδοση: (2009) -
Support Vector Machines
ανά: Christmann, Andreas, κ.ά.
Έκδοση: (2008) -
Modern Multivariate Statistical Techniques Regression, Classification, and Manifold Learning /
ανά: Izenman, Alan J.
Έκδοση: (2008) -
Introduction to Data Science A Python Approach to Concepts, Techniques and Applications /
ανά: Igual, Laura, κ.ά.
Έκδοση: (2017) -
Encyclopedia of Machine Learning and Data Mining
Έκδοση: (2017)