Principles and Theory for Data Mining and Machine Learning
This book is a thorough introduction to the most important topics in data mining and machine learning. It begins with a detailed review of classical function estimation and proceeds with chapters on nonlinear regression, classification, and ensemble methods. The final chapters focus on clustering, d...
Κύριοι συγγραφείς: | , , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
New York, NY :
Springer New York,
2009.
|
Σειρά: | Springer Series in Statistics,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Variability, Information, and Prediction
- Local Smoothers
- Spline Smoothing
- New Wave Nonparametrics
- Supervised Learning: Partition Methods
- Alternative Nonparametrics
- Computational Comparisons
- Unsupervised Learning: Clustering
- Learning in High Dimensions
- Variable Selection
- Multiple Testing.