Real-Time Search for Learning Autonomous Agents

Autonomous agents or multiagent systems are computational systems in which several computational agents interact or work together to perform some set of tasks. These systems may involve computational agents having common goals or distinct goals. Real-Time Search for Learning Autonomous Agents focuse...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ishida, Toru (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 1997.
Σειρά:The Springer International Series in Engineering and Computer Science, 406
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03149nam a22004815i 4500
001 978-0-585-34507-9
003 DE-He213
005 20151030091020.0
007 cr nn 008mamaa
008 100301s1997 xxu| s |||| 0|eng d
020 |a 9780585345079  |9 978-0-585-34507-9 
024 7 |a 10.1007/b102407  |2 doi 
040 |d GrThAP 
050 4 |a TK7874.6 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM025000  |2 bisacsh 
082 0 4 |a 004.6  |2 23 
100 1 |a Ishida, Toru.  |e author. 
245 1 0 |a Real-Time Search for Learning Autonomous Agents  |h [electronic resource] /  |c by Toru Ishida. 
264 1 |a Boston, MA :  |b Springer US,  |c 1997. 
300 |a XVI, 126 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a The Springer International Series in Engineering and Computer Science,  |x 0893-3405 ;  |v 406 
505 0 |a Realtime Search Performance -- Controlling Learning Processes -- Adapting to Changing Goals -- Cooperating in Uncertain Situations -- Forming Problem Solving Organizations. 
520 |a Autonomous agents or multiagent systems are computational systems in which several computational agents interact or work together to perform some set of tasks. These systems may involve computational agents having common goals or distinct goals. Real-Time Search for Learning Autonomous Agents focuses on extending real-time search algorithms for autonomous agents and for a multiagent world. Although real-time search provides an attractive framework for resource-bounded problem solving, the behavior of the problem solver is not rational enough for autonomous agents. The problem solver always keeps the record of its moves and the problem solver cannot utilize and improve previous experiments. Other problems are that although the algorithms interleave planning and execution, they cannot be directly applied to a multiagent world. The problem solver cannot adapt to the dynamically changing goals and the problem solver cannot cooperatively solve problems with other problem solvers. This book deals with all these issues. Real-Time Search for Learning Autonomous Agents serves as an excellent resource for researchers and engineers interested in both practical references and some theoretical basis for agent/multiagent systems. The book can also be used as a text for advanced courses on the subject. 
650 0 |a Computer science. 
650 0 |a Special purpose computers. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Special Purpose and Application-Based Systems. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Computer Science, general. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780792399445 
830 0 |a The Springer International Series in Engineering and Computer Science,  |x 0893-3405 ;  |v 406 
856 4 0 |u http://dx.doi.org/10.1007/b102407  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
912 |a ZDB-2-BAE 
950 |a Engineering (Springer-11647)