Global Smoothness and Shape Preserving Interpolation by Classical Operators

This monograph examines and develops the Global Smoothness Preservation Property (GSPP) and the Shape Preservation Property (SPP) in the field of interpolation of functions. The study is developed for the univariate and bivariate cases using well-known classical interpolation operators of Lagrange,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Gal, Sorin G. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2005.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03368nam a22005535i 4500
001 978-0-8176-4401-7
003 DE-He213
005 20151204164359.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780817644017  |9 978-0-8176-4401-7 
024 7 |a 10.1007/b137115  |2 doi 
040 |d GrThAP 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a MAT006000  |2 bisacsh 
082 0 4 |a 518  |2 23 
100 1 |a Gal, Sorin G.  |e author. 
245 1 0 |a Global Smoothness and Shape Preserving Interpolation by Classical Operators  |h [electronic resource] /  |c by Sorin G. Gal. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2005. 
300 |a XIII, 146 p. 20 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Global Smoothness Preservation, Univariate Case -- Partial Shape Preservation, Univariate Case -- Global Smoothness Preservation, Bivariate Case -- Partial Shape Preservation, Bivariate Case. 
520 |a This monograph examines and develops the Global Smoothness Preservation Property (GSPP) and the Shape Preservation Property (SPP) in the field of interpolation of functions. The study is developed for the univariate and bivariate cases using well-known classical interpolation operators of Lagrange, Grünwald, Hermite-Fejér and Shepard type. One of the first books on the subject, it presents interesting new results alongwith an excellent survey of past research. Key features include: - potential applications to data fitting, fluid dynamics, curves and surfaces, engineering, and computer-aided geometric design - presents recent work featuring many new interesting results as well as an excellent survey of past research - many interesting open problems for future research presented throughout the text - includes 20 very suggestive figures of nine types of Shepard surfaces concerning their shape preservation property - generic techniques of the proofs allow for easy application to obtaining similar results for other interpolation operators This unique, well-written text is best suited to graduate students and researchers in mathematical analysis, interpolation of functions, pure and applied mathematicians in numerical analysis, approximation theory, data fitting, computer-aided geometric design, fluid mechanics, and engineering researchers. 
650 0 |a Mathematics. 
650 0 |a Approximation theory. 
650 0 |a Functions of complex variables. 
650 0 |a Operator theory. 
650 0 |a Functions of real variables. 
650 0 |a Numerical analysis. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Operator Theory. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Real Functions. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817643874 
856 4 0 |u http://dx.doi.org/10.1007/b137115  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)