Fundamentals of Multibody Dynamics Theory and Applications /

Because of its versatility in analyzing a broad range of applications, multibody dynamics has grown in the past two decades to be an important tool for designing, prototyping, and simulating complex articulated mechanical systems. This textbook—a result of the author’s many years of research and tea...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Amirouche, Farid M. L. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2006.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04476nam a22005535i 4500
001 978-0-8176-4406-2
003 DE-He213
005 20151204163255.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780817644062  |9 978-0-8176-4406-2 
024 7 |a 10.1007/b137682  |2 doi 
040 |d GrThAP 
050 4 |a TJ1-1570 
072 7 |a TGB  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
082 0 4 |a 621  |2 23 
100 1 |a Amirouche, Farid M. L.  |e author. 
245 1 0 |a Fundamentals of Multibody Dynamics  |h [electronic resource] :  |b Theory and Applications /  |c by Farid M. L. Amirouche. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2006. 
300 |a XVI, 684 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Particle Dynamics: The Principle of Newton’s Second Law -- Rigid-Body Kinematics -- Kinematics for General Multibody Systems -- Modeling of Forces in Multibody Systems -- Equations of Motion of Multibody Systems -- Hamilton-Lagrange and Gibbs-Appel Equations -- Handling of Constraints in Multibody Systems Dynamics -- Numerical Stability of Constrained Multibody Systems -- Linearization and Vibration Analysis of Multibody Systems -- Dynamics of Multibody Systems with Terminal Flexible Links -- Dynamic Analysis of Multiple Flexible-Body Systems -- Modeling of Flexibility Effects Using the Boundary-Element Method. 
520 |a Because of its versatility in analyzing a broad range of applications, multibody dynamics has grown in the past two decades to be an important tool for designing, prototyping, and simulating complex articulated mechanical systems. This textbook—a result of the author’s many years of research and teaching—brings together diverse concepts of dynamics, combining the efforts of many researchers in the field of mechanics. Bridging the gap between dynamics and engineering applications such as microrobotics, virtual reality simulation of interactive mechanical systems, nanomechanics, flexible biosystems, crash simulation, and biomechanics, the book puts into perspective the importance of modeling in the dynamic simulation and solution of problems in these fields. To help engineering students and practicing engineers understand the rigid-body dynamics concepts needed for the book, the author presents a compiled overview of particle dynamics and Newton’s second law of motion in the first chapter. A particular strength of the work is its use of matrices to generate kinematic coefficients associated with the formulation of the governing equations of motion. Additional features of the book include: * numerous worked examples at the end of each section * introduction of boundary-element methods (BEM) in the description of flexible systems * up-to-date solution techniques for rigid and flexible multibody dynamics using finite- element methods (FEM) * inclusion of MATLAB-based simulations and graphical solutions * in-depth presentation of constrained systems * presentation of the general form of equations of motion ready for computer implementation * two unique chapters on stability and linearization of the equations of motion Junior/senior undergraduates and first-year graduate engineering students taking a course in dynamics, physics, control, robotics, or biomechanics will find this a useful book with a strong computer orientation towards the subject. The work may also be used as a self-study resource or research reference for practitioners in the above-mentioned fields. 
650 0 |a Engineering. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Mathematical models. 
650 0 |a Mechanics. 
650 0 |a Vibration. 
650 0 |a Dynamical systems. 
650 0 |a Dynamics. 
650 0 |a Mechanical engineering. 
650 1 4 |a Engineering. 
650 2 4 |a Mechanical Engineering. 
650 2 4 |a Mechanics. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Engineering, general. 
650 2 4 |a Vibration, Dynamical Systems, Control. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817642365 
856 4 0 |u http://dx.doi.org/10.1007/b137682  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)