The Breadth of Symplectic and Poisson Geometry Festschrift in Honor of Alan Weinstein /

One of the world’s foremost geometers, Alan Weinstein has made deep contributions to symplectic and differential geometry, Lie theory, mechanics, and related fields. Written in his honor, the invited papers in this volume reflect the active and vibrant research in these areas and are a tribute to We...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Marsden, Jerrold E. (Επιμελητής έκδοσης), Ratiu, Tudor S. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2005.
Σειρά:Progress in Mathematics ; 232
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04841nam a22005295i 4500
001 978-0-8176-4419-2
003 DE-He213
005 20151204152954.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780817644192  |9 978-0-8176-4419-2 
024 7 |a 10.1007/b138687  |2 doi 
040 |d GrThAP 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
082 0 4 |a 516.36  |2 23 
245 1 4 |a The Breadth of Symplectic and Poisson Geometry  |h [electronic resource] :  |b Festschrift in Honor of Alan Weinstein /  |c edited by Jerrold E. Marsden, Tudor S. Ratiu. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2005. 
300 |a XXIII, 654 p. 30 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics ;  |v 232 
505 0 |a Dirac structures, momentum maps, and quasi-Poisson manifolds -- Construction of Ricci-type connections by reduction and induction -- A mathematical model for geomagnetic reversals -- Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization -- Thompson’s conjecture for real semisimple Lie groups -- The Weinstein conjecture and theorems of nearby and almost existence -- Simple singularities and integrable hierarchies -- Momentum maps and measure-valued solutions (peakons, filaments, and sheets) for the EPDiff equation -- Higher homotopies and Maurer-Cartan algebras: Quasi-Lie-Rinehart, Gerstenhaber, and Batalin-Vilkovisky algebras -- Localization theorems by symplectic cuts -- Refinements of the Morse stratification of the normsquare of the moment map -- Quasi, twisted, and all that... in Poisson geometry and Lie algebroid theory -- Minimal coadjoint orbits and symplectic induction -- Quantization of pre-quasi-symplectic groupoids and their Hamiltonian spaces -- Duality and triple structures -- Star exponential functions as two-valued elements -- From momentum maps and dual pairs to symplectic and Poisson groupoids -- Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds -- The universal covering and covered spaces of a symplectic Lie algebra action -- Poisson homotopy algebra: An idiosyncratic survey of homotopy algebraic topics related to Alan’s interests -- Dirac submanifolds of Jacobi manifolds -- Quantum maps and automorphisms. 
520 |a One of the world’s foremost geometers, Alan Weinstein has made deep contributions to symplectic and differential geometry, Lie theory, mechanics, and related fields. Written in his honor, the invited papers in this volume reflect the active and vibrant research in these areas and are a tribute to Weinstein’s ongoing influence. The well-recognized contributors to this text cover a broad range of topics: Induction and reduction for systems with symmetry, symplectic geometry and topology, geometric quantization, the Weinstein Conjecture, Poisson algebra and geometry, Dirac structures, deformations for Lie group actions, Kähler geometry of moduli spaces, theory and applications of Lagrangian and Hamiltonian mechanics and dynamics, symplectic and Poisson groupoids, and quantum representations. Intended for graduate students and working mathematicians in symplectic and Poisson geometry as well as mechanics, this text is a distillation of prominent research and an indication of the future trends and directions in geometry, mechanics, and mathematical physics. Contributors: H. Bursztyn, M. Cahen, M. Crainic, J. J. Duistermaat, K. Ehlers, S. Evens, V. L. Ginzburg, A. B. Givental, S. Gutt, D. D. Holm, J. Huebschmann, L. Jeffrey, F. Kirwan, M. Kogan, J. Koiller, Y. Kosmann-Schwarzbach, B. Kostant, C. Laurent-Gengoux, J-H. Lu, J. E. Marsden, K. C. H. Mackenzie, Y. Maeda, C-M. Marle, T. E. Milanov, N. Miyazaki, R. Montgomery, Y-G. Oh, J-P. Ortega, H. Omori, T. S. Ratiu, P. M. Rios, L. Schwachhöfer, J. Stasheff, I. Vaisman, A. Yoshioka, P. Xu, and S. Zelditch. 
650 0 |a Mathematics. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Geometry. 
650 0 |a Differential geometry. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Geometry. 
700 1 |a Marsden, Jerrold E.  |e editor. 
700 1 |a Ratiu, Tudor S.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817635657 
830 0 |a Progress in Mathematics ;  |v 232 
856 4 0 |u http://dx.doi.org/10.1007/b138687  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)