Analytical Methods in Anisotropic Elasticity with Symbolic Computational Tools /

This comprehensive textbook/reference focuses on the mathematical techniques and solution methodologies required to establish the foundations of anisotropic elasticity and provides the theoretical background for composite material analysis. Specific attention is devoted to the potential of modern sy...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Rand, Omri (Συγγραφέας), Rovenski, Vladimir (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2005.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04071nam a22005415i 4500
001 978-0-8176-4420-8
003 DE-He213
005 20151204184704.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780817644208  |9 978-0-8176-4420-8 
024 7 |a 10.1007/b138765  |2 doi 
040 |d GrThAP 
050 4 |a T57-57.97 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Rand, Omri.  |e author. 
245 1 0 |a Analytical Methods in Anisotropic Elasticity  |h [electronic resource] :  |b with Symbolic Computational Tools /  |c by Omri Rand, Vladimir Rovenski. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2005. 
300 |a XVIII, 451 p. 167 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Fundamentals of Anisotropic Elasticity and Analytical Methodologies -- Anisotropic Materials -- Plane Deformation Analysis -- Solution Methodologies -- Foundations of Anisotropic Beam Analysis -- Beams of General Anisotropy -- Homogeneous, Uncoupled Monoclinic Beams -- Non-Homogeneous Plane and Beam Analysis -- Solid Coupled Monoclinic Beams -- Thin-Walled Coupled Monoclinic Beams -- Program Descriptions. 
520 |a This comprehensive textbook/reference focuses on the mathematical techniques and solution methodologies required to establish the foundations of anisotropic elasticity and provides the theoretical background for composite material analysis. Specific attention is devoted to the potential of modern symbolic computational tools to support highly complex analytical solutions and their contribution to the rigor, analytical uniformity and exactness of the derivation. Key features: * Refreshes and modernizes classical mathematical methods encountered in the theory of anisotropic elasticity * Reviews basic and advanced steps of general analytical solutions, including the initial assumptions and selection of an adequate analytical course * Demonstrates the potential of symbolic computational tools to support the development of analytical solutions and to verify their exactness * Examines the physical interpretation of exact and approximate mathematical solutions and provides important insight into the involved phenomena * Provides state-of-the-art solutions for a wide range of cases, including non-homogeneous and thin-walled configurations Analytical Methods in Anisotropic Elasticity will appeal to a broad audience involved in mathematical modeling, all of whom must have good mathematical skills: graduate students and professors in courses on elasticity and solid-mechanics labs/seminars, applied mathematicians and numerical analysts, scientists and researchers. Engineers involved in aeronautical and space, maritime and mechanical design of composite material structures will find this an excellent hands-on reference text as well. All will benefit from the classical and advanced solutions that are derived and presented using symbolic computational techniques. 
650 0 |a Mathematics. 
650 0 |a Computer-aided engineering. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Computer mathematics. 
650 0 |a Physics. 
650 0 |a Continuum mechanics. 
650 1 4 |a Mathematics. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Continuum Mechanics and Mechanics of Materials. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Computer-Aided Engineering (CAD, CAE) and Design. 
650 2 4 |a Mathematical Methods in Physics. 
700 1 |a Rovenski, Vladimir.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817642723 
856 4 0 |u http://dx.doi.org/10.1007/b138765  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)