Geometric Mechanics on Riemannian Manifolds Applications to Partial Differential Equations /

Differential geometry techniques have very useful and important applications in partial differential equations and quantum mechanics. This work presents a purely geometric treatment of problems in physics involving quantum harmonic oscillators, quartic oscillators, minimal surfaces, and Schrödinger&...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Calin, Ovidiu (Συγγραφέας), Chang, Der-Chen (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2005.
Σειρά:Applied and Numerical Harmonic Analysis
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04048nam a22005775i 4500
001 978-0-8176-4421-5
003 DE-He213
005 20151204185107.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780817644215  |9 978-0-8176-4421-5 
024 7 |a 10.1007/b138771  |2 doi 
040 |d GrThAP 
050 4 |a QA403.5-404.5 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.2433  |2 23 
100 1 |a Calin, Ovidiu.  |e author. 
245 1 0 |a Geometric Mechanics on Riemannian Manifolds  |h [electronic resource] :  |b Applications to Partial Differential Equations /  |c by Ovidiu Calin, Der-Chen Chang. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2005. 
300 |a XVI, 278 p. 26 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied and Numerical Harmonic Analysis 
505 0 |a Introductory Chapter -- Laplace Operators on Riemannian Manifolds -- Lagrangian Formalism on Riemannian Manifolds -- Harmonic Maps from a Lagrangian Viewpoint -- Conservation Theorems -- Hamiltonian Formalism -- Hamilton-Jacobi Theory -- Minimal Hypersurfaces -- Radially Symmetric Spaces -- Fundamental Solutions for Heat Operators with Potentials -- Fundamental Solutions for Elliptic Operators -- Mechanical Curves. 
520 |a Differential geometry techniques have very useful and important applications in partial differential equations and quantum mechanics. This work presents a purely geometric treatment of problems in physics involving quantum harmonic oscillators, quartic oscillators, minimal surfaces, and Schrödinger's, Einstein's and Newton's equations. Historically, problems in these areas were approached using the Fourier transform or path integrals, although in some cases (e.g., the case of quartic oscillators) these methods do not work. New geometric methods are introduced in the work that have the advantage of providing quantitative or at least qualitative descriptions of operators, many of which cannot be treated by other methods. And, conservation laws of the Euler–Lagrange equations are employed to solve the equations of motion qualitatively when quantitative analysis is not possible. Main topics include: Lagrangian formalism on Riemannian manifolds; energy momentum tensor and conservation laws; Hamiltonian formalism; Hamilton–Jacobi theory; harmonic functions, maps, and geodesics; fundamental solutions for heat operators with potential; and a variational approach to mechanical curves. The text is enriched with good examples and exercises at the end of every chapter. Geometric Mechanics on Riemannian Manifolds is a fine text for a course or seminar directed at graduate and advanced undergraduate students interested in elliptic and hyperbolic differential equations, differential geometry, calculus of variations, quantum mechanics, and physics. It is also an ideal resource for pure and applied mathematicians and theoretical physicists working in these areas. 
650 0 |a Mathematics. 
650 0 |a Harmonic analysis. 
650 0 |a Fourier analysis. 
650 0 |a Partial differential equations. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Differential geometry. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Fourier Analysis. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Abstract Harmonic Analysis. 
650 2 4 |a Applications of Mathematics. 
700 1 |a Chang, Der-Chen.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817643546 
830 0 |a Applied and Numerical Harmonic Analysis 
856 4 0 |u http://dx.doi.org/10.1007/b138771  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)