Geometric Mechanics on Riemannian Manifolds Applications to Partial Differential Equations /

Differential geometry techniques have very useful and important applications in partial differential equations and quantum mechanics. This work presents a purely geometric treatment of problems in physics involving quantum harmonic oscillators, quartic oscillators, minimal surfaces, and Schrödinger&...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Calin, Ovidiu (Συγγραφέας), Chang, Der-Chen (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2005.
Σειρά:Applied and Numerical Harmonic Analysis
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Introductory Chapter
  • Laplace Operators on Riemannian Manifolds
  • Lagrangian Formalism on Riemannian Manifolds
  • Harmonic Maps from a Lagrangian Viewpoint
  • Conservation Theorems
  • Hamiltonian Formalism
  • Hamilton-Jacobi Theory
  • Minimal Hypersurfaces
  • Radially Symmetric Spaces
  • Fundamental Solutions for Heat Operators with Potentials
  • Fundamental Solutions for Elliptic Operators
  • Mechanical Curves.