Geometric Mechanics on Riemannian Manifolds Applications to Partial Differential Equations /
Differential geometry techniques have very useful and important applications in partial differential equations and quantum mechanics. This work presents a purely geometric treatment of problems in physics involving quantum harmonic oscillators, quartic oscillators, minimal surfaces, and Schrödinger&...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Boston, MA :
Birkhäuser Boston,
2005.
|
Σειρά: | Applied and Numerical Harmonic Analysis
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Introductory Chapter
- Laplace Operators on Riemannian Manifolds
- Lagrangian Formalism on Riemannian Manifolds
- Harmonic Maps from a Lagrangian Viewpoint
- Conservation Theorems
- Hamiltonian Formalism
- Hamilton-Jacobi Theory
- Minimal Hypersurfaces
- Radially Symmetric Spaces
- Fundamental Solutions for Heat Operators with Potentials
- Fundamental Solutions for Elliptic Operators
- Mechanical Curves.