Complex, Contact and Symmetric Manifolds In Honor of L. Vanhecke /

This volume contains research and survey articles by well known and respected mathematicians on differential geometry and topology that have been collected and dedicated in honor of Lieven Vanhecke, as a tribute to his many fruitful and inspiring contributions to these fields. The papers, all writte...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Kowalski, Oldřich (Επιμελητής έκδοσης), Musso, Emilio (Επιμελητής έκδοσης), Perrone, Domenico (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2005.
Σειρά:Progress in Mathematics ; 234
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04400nam a22006015i 4500
001 978-0-8176-4424-6
003 DE-He213
005 20151204162252.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780817644246  |9 978-0-8176-4424-6 
024 7 |a 10.1007/b138831  |2 doi 
040 |d GrThAP 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516  |2 23 
245 1 0 |a Complex, Contact and Symmetric Manifolds  |h [electronic resource] :  |b In Honor of L. Vanhecke /  |c edited by Oldřich Kowalski, Emilio Musso, Domenico Perrone. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2005. 
300 |a X, 278 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics ;  |v 234 
505 0 |a Curvature of Contact Metric Manifolds -- A Case for Curvature: the Unit Tangent Bundle -- Convex Hypersurfaces in Hadamard Manifolds -- Contact Metric Geometry of the Unit Tangent Sphere Bundle -- Topological-antitopological Fusion Equations, Pluriharmonic Maps and Special Kähler Manifolds -- ?2 and ?-Deformation Theory for Holomorphic and Symplectic Manifolds -- Commutative Condition on the Second Fundamental Form of CR-submanifolds of Maximal CR-dimension of a Kähler Manifold -- The Geography of Non-Formal Manifolds -- Total Scalar Curvatures of Geodesic Spheres and of Boundaries of Geodesic Disks -- Curvature Homogeneous Pseudo-Riemannian Manifolds which are not Locally Homogeneous -- On Hermitian Geometry of Complex Surfaces -- Unit Vector Fields that are Critical Points of the Volume and of the Energy: Characterization and Examples -- On 3D-Riemannian Manifolds with Prescribed Ricci Eigenvalues -- Two Problems in Real and Complex Integral Geometry -- Notes on the Goldberg Conjecture in Dimension Four -- Curved Flats, Exterior Differential Systems, and Conservation Laws -- Symmetric Submanifolds of Riemannian Symmetric Spaces and Symmetric R-spaces -- Complex Forms of Quaternionic Symmetric Spaces. 
520 |a This volume contains research and survey articles by well known and respected mathematicians on differential geometry and topology that have been collected and dedicated in honor of Lieven Vanhecke, as a tribute to his many fruitful and inspiring contributions to these fields. The papers, all written with the necessary introductory and contextual material, describe recent developments and research trends in spectral geometry, the theory of geodesics and curvature, contact and symplectic geometry, complex geometry, algebraic topology, homogeneous and symmetric spaces, and various applications of partial differential equations and differential systems to geometry. One of the key strengths of these articles is their appeal to non-specialists, as well as researchers and differential geometers. Contributors: D.E. Blair; E. Boeckx; A.A. Borisenko; G. Calvaruso; V. Cortés; P. de Bartolomeis; J.C. Díaz-Ramos; M. Djoric; C. Dunn; M. Fernández; A. Fujiki; E. García-Río; P.B. Gilkey; O. Gil-Medrano; L. Hervella; O. Kowalski; V. Muñoz; M. Pontecorvo; A.M. Naveira; T. Oguro; L. Schäfer; K. Sekigawa; C-L. Terng; K. Tsukada; Z. Vlášek; E. Wang; and J.A. Wolf. 
650 0 |a Mathematics. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Geometry. 
650 0 |a Differential geometry. 
650 0 |a Algebraic topology. 
650 0 |a Complex manifolds. 
650 1 4 |a Mathematics. 
650 2 4 |a Geometry. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
700 1 |a Kowalski, Oldřich.  |e editor. 
700 1 |a Musso, Emilio.  |e editor. 
700 1 |a Perrone, Domenico.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817638504 
830 0 |a Progress in Mathematics ;  |v 234 
856 4 0 |u http://dx.doi.org/10.1007/b138831  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)