Lie Theory Harmonic Analysis on Symmetric Spaces—General Plancherel Theorems /

Semisimple Lie groups, and their algebraic analogues over fields other than the reals, are of fundamental importance in geometry, analysis, and mathematical physics. Three independent, self-contained volumes, under the general title Lie Theory, feature survey work and original results by well-establ...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Anker, Jean-Philippe (Επιμελητής έκδοσης), Orsted, Bent (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2005.
Σειρά:Progress in Mathematics ; 230
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04185nam a22005895i 4500
001 978-0-8176-4426-0
003 DE-He213
005 20151204162243.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780817644260  |9 978-0-8176-4426-0 
024 7 |a 10.1007/b138865  |2 doi 
040 |d GrThAP 
050 4 |a QA252.3 
050 4 |a QA387 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 512.55  |2 23 
082 0 4 |a 512.482  |2 23 
245 1 0 |a Lie Theory  |h [electronic resource] :  |b Harmonic Analysis on Symmetric Spaces—General Plancherel Theorems /  |c edited by Jean-Philippe Anker, Bent Orsted. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2005. 
300 |a VIII, 175 p. 3 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics ;  |v 230 
505 0 |a The Plancherel Theorem for a Reductive Symmetric Space -- The Paley—Wiener Theorem for a Reductive Symmetric Space -- The Plancherel Formula on Reductive Symmetric Spaces from the Point of View of the Schwartz Space. 
520 |a Semisimple Lie groups, and their algebraic analogues over fields other than the reals, are of fundamental importance in geometry, analysis, and mathematical physics. Three independent, self-contained volumes, under the general title Lie Theory, feature survey work and original results by well-established researchers in key areas of semisimple Lie theory. Harmonic Analysis on Symmetric Spaces—General Plancherel Theorems presents extensive surveys by E.P. van den Ban, H. Schlichtkrull, and P. Delorme of the spectacular progress over the past decade in deriving the Plancherel theorem on reductive symmetric spaces. Van den Ban’s introductory chapter explains the basic setup of a reductive symmetric space along with a careful study of the structure theory, particularly for the ring of invariant differential operators for the relevant class of parabolic subgroups. Advanced topics for the formulation and understanding of the proof are covered, including Eisenstein integrals, regularity theorems, Maass–Selberg relations, and residue calculus for root systems. Schlichtkrull provides a cogent account of the basic ingredients in the harmonic analysis on a symmetric space through the explanation and definition of the Paley–Wiener theorem. Approaching the Plancherel theorem through an alternative viewpoint, the Schwartz space, Delorme bases his discussion and proof on asymptotic expansions of eigenfunctions and the theory of intertwining integrals. Well suited for both graduate students and researchers in semisimple Lie theory and neighboring fields, possibly even mathematical cosmology, Harmonic Analysis on Symmetric Spaces—General Plancherel Theorems provides a broad, clearly focused examination of semisimple Lie groups and their integral importance and applications to research in many branches of mathematics and physics. Knowledge of basic representation theory of Lie groups as well as familiarity with semisimple Lie groups, symmetric spaces, and parabolic subgroups is required. 
650 0 |a Mathematics. 
650 0 |a Group theory. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Harmonic analysis. 
650 0 |a Functions of complex variables. 
650 0 |a Differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Abstract Harmonic Analysis. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
650 2 4 |a Group Theory and Generalizations. 
700 1 |a Anker, Jean-Philippe.  |e editor. 
700 1 |a Orsted, Bent.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817637774 
830 0 |a Progress in Mathematics ;  |v 230 
856 4 0 |u http://dx.doi.org/10.1007/b138865  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)