Determining Spectra in Quantum Theory

Themainobjectiveofthisbookistogiveacollectionofcriteriaavailablein the spectral theory of selfadjoint operators, and to identify the spectrum and its components in the Lebesgue decomposition. Many of these criteria were published in several articles in di?erent journals. We collected them, added som...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Demuth, Michael (Συγγραφέας), Krishna, Maddaly (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2005.
Σειρά:Progress in Mathematical Physics ; 44
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03617nam a22005655i 4500
001 978-0-8176-4439-0
003 DE-He213
005 20151204153418.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780817644390  |9 978-0-8176-4439-0 
024 7 |a 10.1007/0-8176-4439-3  |2 doi 
040 |d GrThAP 
050 4 |a QA404.7-405 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT033000  |2 bisacsh 
082 0 4 |a 515.96  |2 23 
100 1 |a Demuth, Michael.  |e author. 
245 1 0 |a Determining Spectra in Quantum Theory  |h [electronic resource] /  |c by Michael Demuth, Maddaly Krishna. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2005. 
300 |a X, 219 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematical Physics ;  |v 44 
505 0 |a Measures and Transforms -- Selfadjointness and Spectrum -- Criteria for Identifying the Spectrum -- Operators of Interest -- Applications. 
520 |a Themainobjectiveofthisbookistogiveacollectionofcriteriaavailablein the spectral theory of selfadjoint operators, and to identify the spectrum and its components in the Lebesgue decomposition. Many of these criteria were published in several articles in di?erent journals. We collected them, added some and gave some overview that can serve as a platform for further research activities. Spectral theory of Schr¨ odinger type operators has a long history; however the most widely used methods were limited in number. For any selfadjoint operatorA on a separable Hilbert space the spectrum is identi?ed by looking atthetotalspectralmeasureassociatedwithit;oftenstudyingsuchameasure meant looking at some transform of the measure. The transforms were of the form f,?(A)f which is expressible, by the spectral theorem, as ?(x)dµ (x) for some ?nite measureµ . The two most widely used functions? were the sx ?1 exponential function?(x)=e and the inverse function?(x)=(x?z) . These functions are “usable” in the sense that they can be manipulated with respect to addition of operators, which is what one considers most often in the spectral theory of Schr¨ odinger type operators. Starting with this basic structure we look at the transforms of measures from which we can recover the measures and their components in Chapter 1. In Chapter 2 we repeat the standard spectral theory of selfadjoint op- ators. The spectral theorem is given also in the Hahn–Hellinger form. Both Chapter 1 and Chapter 2 also serve to introduce a series of de?nitions and notations, as they prepare the background which is necessary for the criteria in Chapter 3. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Operator theory. 
650 0 |a Partial differential equations. 
650 0 |a Potential theory (Mathematics). 
650 0 |a Physics. 
650 0 |a Quantum physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Potential Theory. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Quantum Physics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Operator Theory. 
650 2 4 |a Functional Analysis. 
700 1 |a Krishna, Maddaly.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817643669 
830 0 |a Progress in Mathematical Physics ;  |v 44 
856 4 0 |u http://dx.doi.org/10.1007/0-8176-4439-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)