Geometric Function Theory Explorations in Complex Analysis /

Complex variables is a precise, elegant, and captivating subject. Presented from the point of view of modern work in the field, this new book addresses advanced topics in complex analysis that verge on current areas of research, including invariant geometry, the Bergman metric, the automorphism grou...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Krantz, Steven G. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2006.
Σειρά:Cornerstones
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04006nam a22005655i 4500
001 978-0-8176-4440-6
003 DE-He213
005 20151204165246.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780817644406  |9 978-0-8176-4440-6 
024 7 |a 10.1007/0-8176-4440-7  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
245 1 0 |a Geometric Function Theory  |h [electronic resource] :  |b Explorations in Complex Analysis /  |c edited by Steven G. Krantz. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2006. 
300 |a XIII, 314 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Cornerstones 
505 0 |a Classical Function Theory -- Invariant Geometry -- Variations on the Theme of the Schwarz Lemma -- Normal Families -- The Riemann Mapping Theorem and Its Generalizations -- Boundary Regularity of Conformal Maps -- The Boundary Behavior of Holomorphic Functions -- Real and Harmonic Analysis -- The Cauchy-Riemann Equations -- The Green’s Function and the Poisson Kernel -- Harmonic Measure -- Conjugate Functions and the Hilbert Transform -- Wolff’s Proof of the Corona Theorem -- Algebraic Topics -- Automorphism Groups of Domains in the Plane -- Cousin Problems, Cohomology, and Sheaves. 
520 |a Complex variables is a precise, elegant, and captivating subject. Presented from the point of view of modern work in the field, this new book addresses advanced topics in complex analysis that verge on current areas of research, including invariant geometry, the Bergman metric, the automorphism groups of domains, harmonic measure, boundary regularity of conformal maps, the Poisson kernel, the Hilbert transform, the boundary behavior of harmonic and holomorphic functions, the inhomogeneous Cauchy–Riemann equations, and the corona problem. The author adroitly weaves these varied topics to reveal a number of delightful interactions. Perhaps more importantly, the topics are presented with an understanding and explanation of their interrelations with other important parts of mathematics: harmonic analysis, differential geometry, partial differential equations, potential theory, abstract algebra, and invariant theory. Although the book examines complex analysis from many different points of view, it uses geometric analysis as its unifying theme. This methodically designed book contains a rich collection of exercises, examples, and illustrations within each individual chapter, concluding with an extensive bibliography of monographs, research papers, and a thorough index. Seeking to capture the imagination of advanced undergraduate and graduate students with a basic background in complex analysis—and also to spark the interest of seasoned workers in the field—the book imparts a solid education both in complex analysis and in how modern mathematics works. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Harmonic analysis. 
650 0 |a Functions of complex variables. 
650 0 |a Partial differential equations. 
650 0 |a Potential theory (Mathematics). 
650 0 |a Differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Abstract Harmonic Analysis. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Potential Theory. 
700 1 |a Krantz, Steven G.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817643393 
830 0 |a Cornerstones 
856 4 0 |u http://dx.doi.org/10.1007/0-8176-4440-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)