Number Fields and Function Fields—Two Parallel Worlds

Ever since the analogy between number fields and function fields was discovered, it has been a source of inspiration for new ideas, and a long history has not in any way detracted from the appeal of the subject. As a deeper understanding of this analogy could have tremendous consequences, the search...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Geer, Gerard van der (Επιμελητής έκδοσης), Moonen, Ben (Επιμελητής έκδοσης), Schoof, René (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2005.
Σειρά:Progress in Mathematics ; 239
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03997nam a22005055i 4500
001 978-0-8176-4447-5
003 DE-He213
005 20151029231359.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780817644475  |9 978-0-8176-4447-5 
024 7 |a 10.1007/0-8176-4447-4  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
245 1 0 |a Number Fields and Function Fields—Two Parallel Worlds  |h [electronic resource] /  |c edited by Gerard van der Geer, Ben Moonen, René Schoof. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2005. 
300 |a XIII, 321 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics ;  |v 239 
505 0 |a Arithmetic over Function Fields: A Cohomological Approach -- Algebraic Stacks Whose Number of Points over Finite Fields is a Polynomial -- On a Problem of Miyaoka -- Monodromy Groups Associated to Non-Isotrivial Drinfeld Modules in Generic Characteristic -- Irreducible Values of Polynomials: A Non-Analogy -- Schemes over -- Line Bundles and p-Adic Characters -- Arithmetic Eisenstein Classes on the Siegel Space: Some Computations -- Uniformizing the Stacks of Abelian Sheaves -- Faltings’ Delta-Invariant of a Hyperelliptic Riemann Surface -- A Hirzebruch Proportionality Principle in Arakelov Geometry -- On the Height Conjecture for Algebraic Points on Curves Defined over Number Fields -- A Note on Absolute Derivations and Zeta Functions -- On the Order of Certain Characteristic Classes of the Hodge Bundle of Semi-Abelian Schemes -- A Note on the Manin-Mumford Conjecture. 
520 |a Ever since the analogy between number fields and function fields was discovered, it has been a source of inspiration for new ideas, and a long history has not in any way detracted from the appeal of the subject. As a deeper understanding of this analogy could have tremendous consequences, the search for a unified approach has become a sort of Holy Grail. The arrival of Arakelov's new geometry that tries to put the archimedean places on a par with the finite ones gave a new impetus and led to spectacular success in Faltings' hands. There are numerous further examples where ideas or techniques from the more geometrically-oriented world of function fields have led to new insights in the more arithmetically-oriented world of number fields, or vice versa. These invited articles by leading researchers in the field explore various aspects of the parallel worlds of function fields and number fields. Topics range from Arakelov geometry, the search for a theory of varieties over the field with one element, via Eisenstein series to Drinfeld modules, and t-motives. This volume is aimed at a wide audience of graduate students, mathematicians, and researchers interested in geometry and arithmetic and their connections. Contributors: G. Böckle; T. van den Bogaart; H. Brenner; F. Breuer; K. Conrad; A. Deitmar; C. Deninger; B. Edixhoven; G. Faltings; U. Hartl; R. de Jong; K. Köhler; U. Kühn; J.C. Lagarias; V. Maillot; R. Pink; D. Roessler; and A. Werner. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Number theory. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Number Theory. 
650 2 4 |a Mathematical Methods in Physics. 
700 1 |a Geer, Gerard van der.  |e editor. 
700 1 |a Moonen, Ben.  |e editor. 
700 1 |a Schoof, René.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817643973 
830 0 |a Progress in Mathematics ;  |v 239 
856 4 0 |u http://dx.doi.org/10.1007/0-8176-4447-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)