Number Fields and Function Fields—Two Parallel Worlds

Ever since the analogy between number fields and function fields was discovered, it has been a source of inspiration for new ideas, and a long history has not in any way detracted from the appeal of the subject. As a deeper understanding of this analogy could have tremendous consequences, the search...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Geer, Gerard van der (Επιμελητής έκδοσης), Moonen, Ben (Επιμελητής έκδοσης), Schoof, René (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2005.
Σειρά:Progress in Mathematics ; 239
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Arithmetic over Function Fields: A Cohomological Approach
  • Algebraic Stacks Whose Number of Points over Finite Fields is a Polynomial
  • On a Problem of Miyaoka
  • Monodromy Groups Associated to Non-Isotrivial Drinfeld Modules in Generic Characteristic
  • Irreducible Values of Polynomials: A Non-Analogy
  • Schemes over
  • Line Bundles and p-Adic Characters
  • Arithmetic Eisenstein Classes on the Siegel Space: Some Computations
  • Uniformizing the Stacks of Abelian Sheaves
  • Faltings’ Delta-Invariant of a Hyperelliptic Riemann Surface
  • A Hirzebruch Proportionality Principle in Arakelov Geometry
  • On the Height Conjecture for Algebraic Points on Curves Defined over Number Fields
  • A Note on Absolute Derivations and Zeta Functions
  • On the Order of Certain Characteristic Classes of the Hodge Bundle of Semi-Abelian Schemes
  • A Note on the Manin-Mumford Conjecture.