Approximation Theory From Taylor Polynomials to Wavelets /

This concisely written book gives an elementary introduction to a classical area of mathematics—approximation theory—in a way that naturally leads to the modern field of wavelets. The exposition, driven by ideas rather than technical details and proofs, demonstrates the dynamic nature of mathematics...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Christensen, Ole (Συγγραφέας), Christensen, Khadija L. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2005.
Σειρά:Applied and Numerical Harmonic Analysis
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05019nam a22005655i 4500
001 978-0-8176-4448-2
003 DE-He213
005 20151204170130.0
007 cr nn 008mamaa
008 121116s2005 xxu| s |||| 0|eng d
020 |a 9780817644482  |9 978-0-8176-4448-2 
024 7 |a 10.1007/978-0-8176-4448-2  |2 doi 
040 |d GrThAP 
050 4 |a QA403.5-404.5 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.2433  |2 23 
100 1 |a Christensen, Ole.  |e author. 
245 1 0 |a Approximation Theory  |h [electronic resource] :  |b From Taylor Polynomials to Wavelets /  |c by Ole Christensen, Khadija L. Christensen. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2005. 
300 |a XI, 156 p. 5 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied and Numerical Harmonic Analysis 
505 0 |a 1 Approximation with Polynomials -- 1.1 Approximation of a function on an interval -- 1.2 Weierstrass’ theorem -- 1.3 Taylor’s theorem -- 1.4 Exercises -- 2 Infinite Series -- 2.1 Infinite series of numbers -- 2.2 Estimating the sum of an infinite series -- 2.3 Geometric series -- 2.4 Power series -- 2.5 General infinite sums of functions -- 2.6 Uniform convergence -- 2.7 Signal transmission -- 2.8 Exercises -- 3 Fourier Analysis -- 3.1 Fourier series -- 3.2 Fourier’s theorem and approximation -- 3.3 Fourier series and signal analysis -- 3.4 Fourier series and Hilbert spaces -- 3.5 Fourier series in complex form -- 3.6 Parseval’s theorem -- 3.7 Regularity and decay of the Fourier coefficients -- 3.8 Best N-term approximation -- 3.9 The Fourier transform -- 3.10 Exercises -- 4 Wavelets and Applications -- 4.1 About wavelet systems -- 4.2 Wavelets and signal processing -- 4.3 Wavelets and fingerprints -- 4.4 Wavelet packets -- 4.5 Alternatives to wavelets: Gabor systems -- 4.6 Exercises -- 5 Wavelets and their Mathematical Properties -- 5.1 Wavelets and L2 (?) -- 5.2 Multiresolution analysis -- 5.3 The role of the Fourier transform -- 5.4 The Haar wavelet -- 5.5 The role of compact support -- 5.6 Wavelets and singularities -- 5.7 Best N-term approximation -- 5.8 Frames -- 5.9 Gabor systems -- 5.10 Exercises -- Appendix A -- A.1 Definitions and notation -- A.2 Proof of Weierstrass’ theorem -- A.3 Proof of Taylor’s theorem -- A.4 Infinite series -- A.5 Proof of Theorem 3 7 2 -- Appendix B -- B.1 Power series -- B.2 Fourier series for 2?-periodic functions -- List of Symbols -- References. 
520 |a This concisely written book gives an elementary introduction to a classical area of mathematics—approximation theory—in a way that naturally leads to the modern field of wavelets. The exposition, driven by ideas rather than technical details and proofs, demonstrates the dynamic nature of mathematics and the influence of classical disciplines on many areas of modern mathematics and applications. Key features and topics: * Description of wavelets in words rather than mathematical symbols * Elementary introduction to approximation using polynomials (Weierstrass’ and Taylor’s theorems) * Introduction to infinite series, with emphasis on approximation-theoretic aspects * Introduction to Fourier analysis * Numerous classical, illustrative examples and constructions * Discussion of the role of wavelets in digital signal processing and data compression, such as the FBI’s use of wavelets to store fingerprints * Minimal prerequisites: elementary calculus * Exercises that may be used in undergraduate and graduate courses on infinite series and Fourier series Approximation Theory: From Taylor Polynomials to Wavelets will be an excellent textbook or self-study reference for students and instructors in pure and applied mathematics, mathematical physics, and engineering. Readers will find motivation and background material pointing toward advanced literature and research topics in pure and applied harmonic analysis and related areas. 
650 0 |a Mathematics. 
650 0 |a Harmonic analysis. 
650 0 |a Approximation theory. 
650 0 |a Fourier analysis. 
650 0 |a Functional analysis. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Fourier Analysis. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Abstract Harmonic Analysis. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Signal, Image and Speech Processing. 
700 1 |a Christensen, Khadija L.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817636005 
830 0 |a Applied and Numerical Harmonic Analysis 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4448-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)