Neural Networks and Sea Time Series Reconstruction and Extreme-Event Analysis /

Increasingly, neural networks are used and implemented in a wide range of fields and have become useful tools in probabilistic analysis and prediction theory. This book—unique in the literature—studies the application of neural networks to the analysis of time series of sea data, namely significant...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Tirozzi, Brunello (Συγγραφέας), Puca, Silvia (Συγγραφέας), Pittalis, Stefano (Συγγραφέας), Bruschi, Antonello (Συγγραφέας), Morucci, Sara (Συγγραφέας), Ferraro, Enrico (Συγγραφέας), Corsini, Stefano (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2006.
Σειρά:Modeling and Simulation in Science, Engineering and Technology
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04773nam a22007095i 4500
001 978-0-8176-4459-8
003 DE-He213
005 20151204163258.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780817644598  |9 978-0-8176-4459-8 
024 7 |a 10.1007/0-8176-4459-8  |2 doi 
040 |d GrThAP 
050 4 |a TA703-705.4 
050 4 |a TA775-787 
050 4 |a TC1-1800 
072 7 |a RBP  |2 bicssc 
072 7 |a RBGK  |2 bicssc 
072 7 |a SCI042000  |2 bisacsh 
082 0 4 |a 624.15  |2 23 
100 1 |a Tirozzi, Brunello.  |e author. 
245 1 0 |a Neural Networks and Sea Time Series  |h [electronic resource] :  |b Reconstruction and Extreme-Event Analysis /  |c by Brunello Tirozzi, Silvia Puca, Stefano Pittalis, Antonello Bruschi, Sara Morucci, Enrico Ferraro, Stefano Corsini. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2006. 
300 |a XII, 180 p. 64 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Modeling and Simulation in Science, Engineering and Technology 
505 0 |a Basic Notions on Waves and Tides -- The Wave Amplitude Model -- Artificial Neural Networks -- Approximation Theory -- Extreme-Value Theory -- Application of ANN to Sea Time Series -- Application of Approximation Theory and ARIMA Models -- Extreme-Event Analysis -- Generalization to Other Phenomena -- Conclusions. 
520 |a Increasingly, neural networks are used and implemented in a wide range of fields and have become useful tools in probabilistic analysis and prediction theory. This book—unique in the literature—studies the application of neural networks to the analysis of time series of sea data, namely significant wave heights and sea levels. The particular problem examined as a starting point is the reconstruction of missing data, a general problem that appears in many cases of data analysis. Specific topics covered include: * Presentation of general information on the phenomenology of waves and tides, as well as related technical details of various measuring processes used in the study * Description of the model of wind waves (WAM) used to determine the spectral function of waves and predict the behavior of SWH (significant wave heights); a comparison is made of the reconstruction of SWH time series obtained by means of neural network algorithms versus SWH computed by WAM * Principles of artificial neural networks, approximation theory, and extreme-value theory necessary to understand the main applications of the book * Application of artificial neural networks (ANN) to reconstruct SWH and sea levels (SL) * Comparison of the ANN approach and the approximation operator approach, displaying the advantages of ANN * Examination of extreme-event analysis applied to the time series of sea data in specific locations * Generalizations of ANN to treat analogous problems for other types of phenomena and data This book, a careful blend of theory and applications, is an excellent introduction to the use of ANN, which may encourage readers to try analogous approaches in other important application areas. Researchers, practitioners, and advanced graduate students in neural networks, hydraulic and marine engineering, prediction theory, and data analysis will benefit from the results and novel ideas presented in this useful resource. 
650 0 |a Engineering. 
650 0 |a Mathematical models. 
650 0 |a Probabilities. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 0 |a Statistics. 
650 0 |a Fluid mechanics. 
650 0 |a Engineering geology. 
650 0 |a Engineering  |x Geology. 
650 0 |a Foundations. 
650 0 |a Hydraulics. 
650 1 4 |a Engineering. 
650 2 4 |a Geoengineering, Foundations, Hydraulics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Engineering Fluid Dynamics. 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
700 1 |a Puca, Silvia.  |e author. 
700 1 |a Pittalis, Stefano.  |e author. 
700 1 |a Bruschi, Antonello.  |e author. 
700 1 |a Morucci, Sara.  |e author. 
700 1 |a Ferraro, Enrico.  |e author. 
700 1 |a Corsini, Stefano.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817643478 
830 0 |a Modeling and Simulation in Science, Engineering and Technology 
856 4 0 |u http://dx.doi.org/10.1007/0-8176-4459-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)