Geometric Problems on Maxima and Minima

Questions of maxima and minima have great practical significance, with applications to physics, engineering, and economics; they have also given rise to theoretical advances, notably in calculus and optimization. Indeed, while most texts view the study of extrema within the context of calculus, this...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Andreescu, Titu (Συγγραφέας), Mushkarov, Oleg (Συγγραφέας), Stoyanov, Luchezar (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2006.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03762nam a22005655i 4500
001 978-0-8176-4473-4
003 DE-He213
005 20151204185856.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780817644734  |9 978-0-8176-4473-4 
024 7 |a 10.1007/0-8176-4473-3  |2 doi 
040 |d GrThAP 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516  |2 23 
100 1 |a Andreescu, Titu.  |e author. 
245 1 0 |a Geometric Problems on Maxima and Minima  |h [electronic resource] /  |c by Titu Andreescu, Oleg Mushkarov, Luchezar Stoyanov. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2006. 
300 |a X, 264 p. 262 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Methods for Finding Geometric Extrema -- Selected Types of Geometric Extremum Problems -- Miscellaneous -- Hints and Solutions to the Exercises. 
520 |a Questions of maxima and minima have great practical significance, with applications to physics, engineering, and economics; they have also given rise to theoretical advances, notably in calculus and optimization. Indeed, while most texts view the study of extrema within the context of calculus, this carefully constructed problem book takes a uniquely intuitive approach to the subject: it presents hundreds of extreme-value problems, examples, and solutions primarily through Euclidean geometry. Key features and topics: * Comprehensive selection of problems, including Greek geometry and optics, Newtonian mechanics, isoperimetric problems, and recently solved problems such as Malfatti’s problem * Unified approach to the subject, with emphasis on geometric, algebraic, analytic, and combinatorial reasoning * Presentation and application of classical inequalities, including Cauchy--Schwarz and Minkowski’s Inequality; basic results in calculus, such as the Intermediate Value Theorem; and emphasis on simple but useful geometric concepts, including transformations, convexity, and symmetry * Clear solutions to the problems, often accompanied by figures * Hundreds of exercises of varying difficulty, from straightforward to Olympiad-caliber Written by a team of established mathematicians and professors, this work draws on the authors’ experience in the classroom and as Olympiad coaches. By exposing readers to a wealth of creative problem-solving approaches, the text communicates not only geometry but also algebra, calculus, and topology. Ideal for use at the junior and senior undergraduate level, as well as in enrichment programs and Olympiad training for advanced high school students, this book’s breadth and depth will appeal to a wide audience, from secondary school teachers and pupils to graduate students, professional mathematicians, and puzzle enthusiasts. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Geometry. 
650 0 |a Mathematical optimization. 
650 0 |a Topology. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Geometry. 
650 2 4 |a Optimization. 
650 2 4 |a Algebra. 
650 2 4 |a Analysis. 
650 2 4 |a Combinatorics. 
650 2 4 |a Topology. 
700 1 |a Mushkarov, Oleg.  |e author. 
700 1 |a Stoyanov, Luchezar.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817635176 
856 4 0 |u http://dx.doi.org/10.1007/0-8176-4473-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)