The History of Approximation Theory From Euler to Bernstein /

The problem of approximating a given quantity is one of the oldest challenges faced by mathematicians. Its increasing importance in contemporary mathematics has created an entirely new area known as Approximation Theory. The modern theory was initially developed along two divergent schools of though...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Steffens, Karl-Georg (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Anastassiou, George A. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2006.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04064nam a22004935i 4500
001 978-0-8176-4475-8
003 DE-He213
005 20151204184657.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780817644758  |9 978-0-8176-4475-8 
024 7 |a 10.1007/0-8176-4475-X  |2 doi 
040 |d GrThAP 
050 4 |a QA21-27 
072 7 |a PBX  |2 bicssc 
072 7 |a MAT015000  |2 bisacsh 
082 0 4 |a 510.9  |2 23 
100 1 |a Steffens, Karl-Georg.  |e author. 
245 1 4 |a The History of Approximation Theory  |h [electronic resource] :  |b From Euler to Bernstein /  |c by Karl-Georg Steffens ; edited by George A. Anastassiou. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2006. 
300 |a XIX, 219 p. 12 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Forerunners -- Pafnuti Lvovich Chebyshev -- The Saint Petersburg Mathematical School -- Development Outside Russia -- Constructive Function Theory: Kharkiv. 
520 |a The problem of approximating a given quantity is one of the oldest challenges faced by mathematicians. Its increasing importance in contemporary mathematics has created an entirely new area known as Approximation Theory. The modern theory was initially developed along two divergent schools of thought: the Eastern or Russian group, employing almost exclusively algebraic methods, was headed by Chebyshev together with his coterie at the Saint Petersburg Mathematical School, while the Western mathematicians, adopting a more analytical approach, included Weierstrass, Hilbert, Klein, and others. This work traces the history of approximation theory from Leonhard Euler's cartographic investigations at the end of the 18th century to the early 20th century contributions of Sergei Bernstein in defining a new branch of function theory. One of the key strengths of this book is the narrative itself. The author combines a mathematical analysis of the subject with an engaging discussion of the differing philosophical underpinnings in approach as demonstrated by the various mathematicians. This exciting exposition integrates history, philosophy, and mathematics. While demonstrating excellent technical control of the underlying mathematics, the work is focused on essential results for the development of the theory. The exposition begins with a history of the forerunners of modern approximation theory, i.e., Euler, Laplace, and Fourier. The treatment then shifts to Chebyshev, his overall philosophy of mathematics, and the Saint Petersburg Mathematical School, stressing in particular the roles played by Zolotarev and the Markov brothers. A philosophical dialectic then unfolds, contrasting East vs. West, detailing the work of Weierstrass as well as that of the Goettingen school led by Hilbert and Klein. The final chapter emphasizes the important work of the Russian Jewish mathematician Sergei Bernstein, whose constructive proof of the Weierstrass theorem and extension of Chebyshev's work serve to unify East and West in their approaches to approximation theory. Appendices containing biographical data on numerous eminent mathematicians, explanations of Russian nomenclature and academic degrees, and an excellent index round out the presentation. 
650 0 |a Mathematics. 
650 0 |a Approximation theory. 
650 0 |a Fourier analysis. 
650 0 |a Sequences (Mathematics). 
650 0 |a History. 
650 1 4 |a Mathematics. 
650 2 4 |a History of Mathematical Sciences. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Sequences, Series, Summability. 
650 2 4 |a Fourier Analysis. 
700 1 |a Anastassiou, George A.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817643539 
856 4 0 |u http://dx.doi.org/10.1007/0-8176-4475-X  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)