Cycle Spaces of Flag Domains A Complex Geometric Viewpoint /

This monograph, divided into four parts, presents a comprehensive treatment and systematic examination of cycle spaces of flag domains. Assuming only a basic familiarity with the concepts of Lie theory and geometry, this work presents a complete structure theory for these cycle spaces, as well as th...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Fels, Gregor (Συγγραφέας), Huckleberry, Alan (Συγγραφέας), Wolf, Joseph A. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2006.
Σειρά:Progress in Mathematics ; 245
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03985nam a22006015i 4500
001 978-0-8176-4479-6
003 DE-He213
005 20151029211410.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780817644796  |9 978-0-8176-4479-6 
024 7 |a 10.1007/0-8176-4479-2  |2 doi 
040 |d GrThAP 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
082 0 4 |a 516.36  |2 23 
100 1 |a Fels, Gregor.  |e author. 
245 1 0 |a Cycle Spaces of Flag Domains  |h [electronic resource] :  |b A Complex Geometric Viewpoint /  |c by Gregor Fels, Alan Huckleberry, Joseph A. Wolf. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2006. 
300 |a XX, 339 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics ;  |v 245 
505 0 |a to Flag Domain Theory -- Structure of Complex Flag Manifolds -- Real Group Orbits -- Orbit Structure for Hermitian Symmetric Spaces -- Open Orbits -- The Cycle Space of a Flag Domain -- Cycle Spaces as Universal Domains -- Universal Domains -- B-Invariant Hypersurfaces in MZ -- Orbit Duality via Momentum Geometry -- Schubert Slices in the Context of Duality -- Analysis of the Boundary of U -- Invariant Kobayashi-Hyperbolic Stein Domains -- Cycle Spaces of Lower-Dimensional Orbits -- Examples -- Analytic and Geometric Consequences -- The Double Fibration Transform -- Variation of Hodge Structure -- Cycles in the K3 Period Domain -- The Full Cycle Space -- Combinatorics of Normal Bundles of Base Cycles -- Methods for Computing H1(C; O) -- Classification for Simple with rank < rank -- Classification for rank = rank . 
520 |a This monograph, divided into four parts, presents a comprehensive treatment and systematic examination of cycle spaces of flag domains. Assuming only a basic familiarity with the concepts of Lie theory and geometry, this work presents a complete structure theory for these cycle spaces, as well as their applications to harmonic analysis and algebraic geometry. Key features: * Accessible to readers from a wide range of fields, with all the necessary background material provided for the nonspecialist * Many new results presented for the first time * Driven by numerous examples * The exposition is presented from the complex geometric viewpoint, but the methods, applications and much of the motivation also come from real and complex algebraic groups and their representations, as well as other areas of geometry * Comparisons with classical Barlet cycle spaces are given * Good bibliography and index Researchers and graduate students in differential geometry, complex analysis, harmonic analysis, representation theory, transformation groups, algebraic geometry, and areas of global geometric analysis will benefit from this work. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Functions of complex variables. 
650 0 |a Differential geometry. 
650 0 |a Quantum physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Quantum Physics. 
700 1 |a Huckleberry, Alan.  |e author. 
700 1 |a Wolf, Joseph A.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817643911 
830 0 |a Progress in Mathematics ;  |v 245 
856 4 0 |u http://dx.doi.org/10.1007/0-8176-4479-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)