Differential Geometry and Analysis on CR Manifolds

The study of CR manifolds lies at the intersection of three main mathematical disciplines: partial differential equations, complex analysis in several complex variables, and differential geometry. While the PDE and complex analytic aspects have been intensely studied in the last fifty years, much ef...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Dragomir, Sorin (Συγγραφέας), Tomassini, Giuseppe (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2006.
Σειρά:Progress in Mathematics ; 246
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03460nam a22005655i 4500
001 978-0-8176-4483-3
003 DE-He213
005 20151103123550.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780817644833  |9 978-0-8176-4483-3 
024 7 |a 10.1007/0-8176-4483-0  |2 doi 
040 |d GrThAP 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
082 0 4 |a 516.36  |2 23 
100 1 |a Dragomir, Sorin.  |e author. 
245 1 0 |a Differential Geometry and Analysis on CR Manifolds  |h [electronic resource] /  |c by Sorin Dragomir, Giuseppe Tomassini. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2006. 
300 |a XVI, 488 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics ;  |v 246 
505 0 |a CR Manifolds -- The Fefferman Metric -- The CR Yamabe Problem -- Pseudoharmonic Maps -- Pseudo-Einsteinian Manifolds -- Pseudo-Hermitian Immersions -- Quasiconformal Mappings -- Yang-Mills Fields on CR Manifolds -- Spectral Geometry. 
520 |a The study of CR manifolds lies at the intersection of three main mathematical disciplines: partial differential equations, complex analysis in several complex variables, and differential geometry. While the PDE and complex analytic aspects have been intensely studied in the last fifty years, much effort has recently been made to understand the differential geometric side of the subject. This monograph provides a unified presentation of several differential geometric aspects in the theory of CR manifolds and tangential Cauchy–Riemann equations. It presents the major differential geometric acheivements in the theory of CR manifolds, such as the Tanaka–Webster connection, Fefferman's metric, pseudo-Einstein structures and the Lee conjecture, CR immersions, subelliptic harmonic maps as a local manifestation of pseudoharmonic maps from a CR manifold, Yang–Mills fields on CR manifolds, to name a few. It also aims at explaining how certain results from analysis are employed in CR geometry. Motivated by clear exposition, many examples, explicitly worked-out geometric results, and stimulating unproved statements and comments referring to the most recent aspects of the theory, this monograph is suitable for researchers and graduate students in differential geometry, complex analysis, and PDEs. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Partial differential equations. 
650 0 |a Functions of complex variables. 
650 0 |a Differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
650 2 4 |a Analysis. 
700 1 |a Tomassini, Giuseppe.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817643881 
830 0 |a Progress in Mathematics ;  |v 246 
856 4 0 |u http://dx.doi.org/10.1007/0-8176-4483-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)