Vortices in Bose—Einstein Condensates

Since the first experimental achievement of Bose–Einstein condensates (BEC) in 1995 and the award of the Nobel Prize for Physics in 2001, the properties of these gaseous quantum fluids have been the focus of international interest in physics. This monograph is dedicated to the mathematical modelling...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Aftalion, Amandine (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2006.
Σειρά:Progress in Nonlinear Differential Equations and Their Applications ; 67
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03997nam a22005775i 4500
001 978-0-8176-4492-5
003 DE-He213
005 20151204154628.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780817644925  |9 978-0-8176-4492-5 
024 7 |a 10.1007/0-8176-4492-X  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Aftalion, Amandine.  |e author. 
245 1 0 |a Vortices in Bose—Einstein Condensates  |h [electronic resource] /  |c by Amandine Aftalion. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2006. 
300 |a XII, 203 p. 18 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Nonlinear Differential Equations and Their Applications ;  |v 67 
505 0 |a The Physical Experiment and Their Mathematical Modeling -- The Mathematical Setting: A Survey of the Main Theorems -- Two-Dimensional Model for otating Condensate -- Other Trapping Potentials -- High-Velocity and Quantam Hall Regime -- Three-Dimensional Rotating Condensate -- Superfluid Flow Around an Obstacle -- Further Open Problems. 
520 |a Since the first experimental achievement of Bose–Einstein condensates (BEC) in 1995 and the award of the Nobel Prize for Physics in 2001, the properties of these gaseous quantum fluids have been the focus of international interest in physics. This monograph is dedicated to the mathematical modelling of some specific experiments which display vortices and to a rigorous analysis of features emerging experimentally. In contrast to a classical fluid, a quantum fluid such as a Bose–Einstein condensate can rotate only through the nucleation of quantized vortices beyond some critical velocity. There are two interesting regimes: one close to the critical velocity, where there is only one vortex that has a very special shape; and another one at high rotation values, for which a dense lattice is observed. One of the key features related to superfluidity is the existence of these vortices. We address this issue mathematically and derive information on their shape, number, and location. In the dilute limit of these experiments, the condensate is well described by a mean field theory and a macroscopic wave function solving the so-called Gross–Pitaevskii equation. The mathematical tools employed are energy estimates, Gamma convergence, and homogenization techniques. We prove existence of solutions that have properties consistent with the experimental observations. Open problems related to recent experiments are presented. The work can serve as a reference for mathematical researchers and theoretical physicists interested in superfluidity and quantum fluids, and can also complement a graduate seminar in elliptic PDEs or modelling of physical experiments. 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Physics. 
650 0 |a Continuum physics. 
650 0 |a Condensed matter. 
650 0 |a Superconductivity. 
650 0 |a Superconductors. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Strongly Correlated Systems, Superconductivity. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Condensed Matter Physics. 
650 2 4 |a Classical Continuum Physics. 
650 2 4 |a Applications of Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817643928 
830 0 |a Progress in Nonlinear Differential Equations and Their Applications ;  |v 67 
856 4 0 |u http://dx.doi.org/10.1007/0-8176-4492-X  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)